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Introduction

How to use this book

This is a self-contained course in the basic techniques of statistics and data analysis. Whilst much theoretical material is
introduced, extensive use is made of computer based practical exercises. In this way you will learn the basic techniques
of statistics and data analysis whilst actually doing statistics and data analysis yourself. All techniques are introduced in
the context of analysing a real-world study into stress levels amongst student groups. This highly practical bias means
that you should be seated at your personal computer as you work through this book.

Typographical Conventions

Several typefaces are used throughout this book. The following table illustrates their uses:

Typeface Use Example
body text Main text. examine the residuals
Title Page and section headings. Distributions
VARIABLE Variables referred to in the text. outcome is CHQCASE
COMMAND ANALYSIS commands referred to in the text. the REGRESS command
MODULE Modules of the course software. the ANALYSIS module
emphasis Bold letters are used for emphasis. not normally distributed
term Important technical terms are italicised. positively skewed
output Output from the course software. p-value = 0.758942
calculations Calculations and worked examples. 2-1=1
commands Commands - type exactly as shown. scatter mee resid
ElM s Keystrokes press to start
Formula Statistical formulae




The course software

The course software

The course software and example dataset are supplied on the floppy disk. The course software is the ANALYSIS
module of a public domain database and statistics package called Epilnfo. The full version of Epilnfo including data-
entry, data-checking, data-management, statistics, and sample size modules is available from Brixton Books.

To use the course software place the supplied disk in the a: drive of your computer and make this drive the default drive
by typing:

a:
at the MSDOS prompt. Type:

analysis

at the MSDOS prompt and press [eves] to start the course software (if your are using Windows or OS/2 then you will
need to start an "MSDOS Prompt' session in order to use the course software). You may also copy the course software
and example dataset (all files on the floppy disk) to a directory on your hard disk and run the software from there.

The course software is designed to run on any IBM compatible personal computer running MSDOS. You may also run
the course software in a DOS window under Microsoft Windows, IBM OS/2, or using a PC emulator such as SoftPC or
SoftWindows on a Macintosh, PowerPC, or UNIX machine.
ANALYSIS can read both Epilnfo and dBase format files.
Please acknowledge Epilnfo in any manuscript that makes use of its calculations. A suitable reference is:

Dean AG, Dean JA, Coulombier D, Brendel KA, Smith DC, Burton AH, Dicker RC, Sullivan K, Fagan RF,

Arner TG (1994), Epilnfo: A word processing, database and statistics program for epidemiology on
microcomputers, Centres for Disease Control and Prevention, Atlanta, Georgia, USA.



The example dataset

Introduction to the study

Several studies have investigated the issue of stress in the caring professions. Much of this work has been focused on
general nurses and junior hospital doctors. Few quantitative studies have focused on social workers. The data presented
here was collected as part of a study of social work students.

Three groups of students were surveyed:
1. Fifty (50) social work students studying for a diploma in social work.
2. Sixty-nine (69) undergraduate psychology students studying for a university degree course.
3. Thirty-three (33) graduate trainees following a teacher training (PGCE) course.

All students were in their first year of study. The PGCE students were all graduates. Study subjects were approached via
their course tutors and asked to complete four separate questionnaires:

1. Demographic Questionnaire: A short five item form asking about sex, age, marital status, living situation, and
ethnic origin.

2. General Health Questionnaire (GHQ-28): A twenty-eight item self-administered screening questionnaire
developed by Goldberg (Goldberg D & Williams P, A User's Guide to the General Health Questionnaire,
NFER-Nelson, Windsor, 1988). It is aimed at detecting psychological ill-health in people in non-psychiatric
settings, including community, primary care, and general hospital units.

3. Rosenberg Self-Esteem Scale: A widely used questionnaire used to assess levels of self-esteem that was first
developed for use with adolescents (Rosenberg M, Society and the Adolescent Self-Concept, Princeton
University Press, Princeton NJ, 1965). The ten item version used in this study was developed by Wycherley
(Wycherley B, The Living Skills Pack, South East Thames Regional Health Authority, Bexhill-on-Sea, 1987).

4. Maslach Burnout Inventory: This is the name popularly given to Maslach and Jackson's twenty-two item
questionnaire used for the Human Services Survey (Maslach C & Jackson S, Maslach Burnout Inventory,
Consulting Psychologists Press, Palo Alto CA, 1986). Its purpose is to measure the feelings of workers in the
caring professions about their jobs, colleagues, and users of their services. There are three subscales: Emotional
Exhaustion, Depersonalisation, and Personal Accomplishment. This questionnaire was not given to the
psychology students because they were not in contact with clients or pupils on a regular basis.

Objectives of the study
The objectives of the study were:

1. To determine whether students undertaking professional training exhibited higher stress scores than
undergraduate students.

2. To determine whether students undertaking professional training in social work exhibited higher stress levels
than those undertaking postgraduate teacher training.

Further details of the study can be found in:

Tobin PJ & Carson J, Stress and the Student Social Worker, Social Work & Social Sciences Review, Vol 5(3),
pp 246-255, 1994,



Variable names, types, and ranges

The structure of the SSSW.REC dataset

Data from this study is stored in an Epilnfo data file called SSSW.REC. The following table lists the names, types, and
ranges of variables in the SSSW.REC dataset. The variable types and the Epilnfo pictures that would be used to define
variables in .QES files or with the DEFINE command in ANALYSIS are also listed:

Variable

Contents

Type

Picture

Values

SUBJECT

Subject ID number

Number

<idnum>

1 thru 152

COHORT

Study group

Character

<AAAAAAAAARAA>

ACADEMIC
PGCE
SOCIAL WORK

SEX

Sex

Number

1 = Male
2 = Female

AGE

Age

Number

1 =25 and under
2 =0ver 25

MARITAL

Marital status

Number

1 = Married

2 = Single

3 = Divorced
4 = Separated
5 = Cohabiting
6 = Widowed

LIVING

Living with ...

Number

1 = Alone

2 = Parents or siblings

3 = Partner

4 = Partner and children
5 = Children

6 = Friends or colleagues

ETHNIC

Ethnic origin

Number

##

1 = African

2 = West-Indian

3 = Indian

4 = Pakistani

5 = Bangladeshi

6 = East African Asian
7 = Chinese

8 = Cypriot

9 = Black European
10 = White European
11 = Other

GHQ

GHQ-28

Number

i

Score (0-99)

ROSENBERG

Self-esteem

Number

i

Score (0-99)

MEE

Emotional-exhaustion

Number

i

Score (0-99)

MDP

Depersonalisation

Number

i

Score (0-99)

MPA

Accomplishment

Number

i

Score (0-99)

This table is reproduced on the inside back cover of this book.




Categorical and continuous variable

The two broad groups
Variables can be split into two broad groups. These are:

Variables that hold codes that indicate membership of a defined category or group. The variables COHORT,
SEX, AGE, MARITAL, LIVING, and ETHNIC are examples of categorical variables in the Stress and the
Student Social Worker dataset. A particularly common type of categorical variable is a binary categorical
variable where cases can belong to one of two alternative groups. The variables SEX and AGE are examples
of binary categorical variables in the Stress and the Student Social Workerdataset. Categorical variables can
be ordered (as with AGE) or non-ordered (as with COHORT, SEX, MARITAL, LIVING, and ETHNIC).

Variables hold data that is measured and stored on an ordered scale. Discrete variables are limited to whole
numbers. This includes data such as scores and counts The variables GHQ, ROSENBERG, MEE, MDP, and
MPA are examples of discrete variables in the Stress and the Student Social Worker dataset Continuous
variables hold data that is measured on a fully continuous scale that is not constrained to whole numbers. Data
such as height and weight would be continuous variables.

It is important that you appreciate the distinction between these two broad groups of variable as different techniques are
used to describe and analyse them.



Files, cases, and variables

Files, cases, records, variables, and fields

A set of data (dataset) is stored in the computer as a file. A file consists of a collection of cases (or records), one for
each individual. Each case contains the data on that individual in a series of variables (or fields):

—
—

Subject : <idnum> Y\

Cohort : <AAAAAAAAAAA>

Sex : #

Age : #

Marital Status : #

Living with : # > Variables > Case >~  File

Ethnic Origin : #

GHQ-28 : ##

Rosenberg : ##

MEE : ##

MDP : ##

MPA : ## )
_/ _/

In our example, the cases would be individuals interviewed and the variables would be the answers to the questions
asked (or scores calculated from those answers).

Data is usually represented in a table in which each row represents an individual case or record and each column
represents a variable or field. Here are the first three cases in the Stress and the Student Social Worker study:

Subject Cohort Sex Age Marital Living Ethnic GHQ Rosenberg MEE | MDP | MPA
1 SOCIAL 2 2 2 5 2 2 15 14 0 2
WORK
2 SOCIAL 2 2 1 4 2 17 13 12 6 3
WORK
3 SOCIAL 2 2 1 1 11 21 26 29 2 3
WORK

10



Retrieving a dataset in ANALYSIS

Retrieving a dataset

ANALYSIS is the data analysis module of Epilnfo. With ANALYSIS you can use simple commands to produce lists,
frequencies, statistics and graphs. Type

analysis
at the MSDOS prompt and press [eves] to start ANALYSIS (see page 8).

Once ANALYSIS starts the screen is divided into several distinct sections. The upper section is headed OUTPUT and
the lower section is headed COMMANDS. At the top of the screen are two lines giving the status information:

Dataset: <None> Free memory: 250K
Use READ to choose a dataset

The status information shows the name of the current data file (dataset) and the amount of free memory in the system
(this will depend on how your computer has been set up and is likely to differ from system to system). The bottom line
of the screen shows the function keys available from within ANALYSIS:

=
S

Function

Help

Menu of commands

Menu of variables in the current dataset

Browse the current dataset in ‘spreadsheet’ format

Printer on / Printer off
Temporary DOS session (type EXIT to get back to ANALYSIS)
Quit ANALYSIS

1
3

We need to tell ANALYSIS the name of the dataset we want to work with. The status information reminds you to do
this:

Dataset: <None> Free memory: 250K
Use READ to choose a dataset

The data for the Stress and the Student Social Workerstudy is stored in an Epilnfo file called SSSW.REC. Type:

read sssw.rec

and press [ever] . The name of the file and the number of records will appear at the top of the screen, indicating that the
file has been read:

Dataset: A:\SSSW.REC (152 records) Free memory: 250K
Criteria: All records selected

Note that you need to press the key to instruct ANALYSIS to act on any of the commands you type. You can edit
the command line before you press . The command is executed only after you press the key. You can clear
(i.e. delete) the command line by pressing [fg]. ANALY SIS maintains a list of previously entered commands which you
can scroll through using the [1] and [¥] keys.

11



Examining a dataset

The BROWSE command

Look at the menu bar at the bottom of the screen showing the function keys available within ANALYSIS. Press the
key to browse through the data. The first twenty-one records appear on the screen, one record per line, with variables
running across the line. Move around the file using the [1], [=], [¥], [], [Pevr], [Py, [END] and [Hove] keys. Their uses
are:

Keys Action
[Feur], move up & down through the records (rows)

[ome] move to the top & bottom records (rows)
1, =1, 3, move between variables (columns) or records (rows)
+ [, + move to the first & last variables (columns)

Press again to select full screen mode. You now have a single record displayed above the menu bar. Look at the
menu bar and work out how to move to the next record and back to the previous one. Try this a few times. Press
again to return to ‘spreadsheet’ mode. When you have finished looking at the data press to return to the main
ANALYSIS screen. Note that the word BROWSE appeared in the COMMANDS window, as a result of pressing [[4].
We could have typed the command BROWSE instead of pressing the [[F4] key.

The LIST command

If we want to see the variables in a dataset and examine them variable-by-variable and record-by-record we would use
the BROWSE command. If we want to see data as a list we would use the LIST command. Type:

list subject cohort sex age marital living ethnic

The SUBJECT, COHORT, SEX, AGE, MARITAL, LIVING, and ETHNIC variables (together with the internal record
number) for all cases in the dataset are listed on the output screen. Since it is impossible to view all 152 cases on the
screen at the same time, they are listed a page at a time (each page showing fourteen cases). The word <more> at the
bottom of the output screen means there are more pages of output to come. Press any key to see the next page of output.
If you do not want to see any more output, press [ESC]. When <more> no longer appears at the bottom of the output
screen you are at the bottom of the listing. You can scroll back through the listing using the and keys. You
can also use with the and keys to scroll up and down the output screen one line at a time.

BROWSE and LIST commands

You can use the BROWSE and LIST commands on their own to view the entire dataset (i.e. all variables for all cases)
or you can specify a list of variables to view. The command:

list mee mdp mpa
and the command:

browse mee mdp mpa

both allow you to examine the contents of the MEE, MDP, and MPA variables. The BROWSE command is more
flexible (‘spreadsheet’ and full-screen modes, easy scrolling between variables and cases, output not limited to the width
of the screen) but sends output to the screen only. If you want to list variables and cases to a printer or file then you
should use the LIST command.

12



Subsets of data

The SELECT command

If we wanted to work with data for a subset of cases we would use the SELECT command to select only those cases we
wanted to work with. Type:

select sex = 2

Any subsequent commands we type will be performed only with the data for females (SEX = 2). Note that the status
information at the top of the screen changes to reflect the SELECTion criteria:

Dataset: A:\SSSW.REC (152 records) Free memory: 250K
Criteria: sex = 2

Type the command:
list subject age sex marital

If we page through the output screen, we can see that only females are listed. Now suppose we want to work with the
male subjects (SEX = 1). If we type:

select sex =1

No records will be SELECTed (check this using the LIST or BROWSE commands). This is because there can be no
cases where SEX =2 and SEX =1 at the same time:

Dataset: A:\SSSW.REC (152 records) Free memory: 250K
Criteria: (sex = 2) AND (sex = 1)

What we must do is cancel the previous SELECT statement, so that all records are SELECTed again. Type:

select

The SELECT command on its own instructs ANALYSIS to work with all the cases in a dataset. Note that the
SELECTion criteria at the top of the screen now shows that all records are selected:

Dataset: A:\ SSSW.REC (152 records) Free memory: 250K
Criteria: All records selected

Issue another SELECT command to SELECT the males:

select sex =1

Examine the SELECTion criteria at the top of the screen. Use the BROWSE or LIST command and scroll through the
listing to check that this new SELECT command has worked as expected.

Issue the SELECT command on its own:

select

to clear the current SELECTion criteria and continue working with all records in the dataset.

13



Subsets of data

More complex selections

The expression (e.g. ‘SEX = 1) used with the SELECT command can be a complex expression using a combination of

inequality operators:

Operator Meaning Example
= equal to sex = 1
<> not equal to sex <> 1
< less than ghg < 5
> greater than ghg > 5
<= less than or equal to ghg <= 5
>= greater than or equal to ghg >= 5

and Boolean operators:

Operator Meaning Example
and both expressions must be true sex = 1 and ghg < 5
or either of the expressions may be true sex = 1 or ghg < 5
not the expression must not be true sex = 1 and not ghg < 5

Boolean operators are symbols used to express logic and to test the validity (truth) of a logical expression in an
algebraic way. Boolean operators always separate expressions that can only be true or false (e.g. ‘Is the GHQ-28 score
less than five?’) and always return true or false values. Here are the truth tables for the AND and OR Boolean operators:

AND OR
First Second Resulting First Second Resulting
Expression | Expression | Expression Expression | Expression | Expression
false false false false false false
true false false true false true
false true false false true true
true true true true true true

The NOT operator reverses the resulting expression (i.e. true becomes false and false becomes true).

Parentheses can be used to create complex expressions or to group expressions. Examples are:

Example Selected Cases
sex = 1 Males
sex = 1 and cohort = "PGCE" Male PGCE students
sex = 1 and cohort = "PGCE" and ethnic = 1 Male African PGCE students
sex = 1 or cohort = "PGCE" Males and PGCE students
sex = 1 or (cohort = "PGCE" and ethnic = 1) Males and African PGCE students
sex = 2 Females
sex = 2 and ethnic = 3 Indian females
sex = 2 and ethnic = 3 and age = 2 Indian females over 25
sex = 2 or ethnic = 3 Females and Indians
sex = 2 or (ethnic = 3 and age = 2) Females and Indians over 25

The Boolean operators may appear to work against common sense but it is not difficult to build expressions using them
as long as you remember that AND excludes cases (all expressions must be true) whereas OR includes them (only one
expression need be true).

14



Subsets of data

When to use quotes with SELECT

You may have noticed that some of the SELECTion expressions in the examples had selection values enclosed in
double-quote characters (") whilst others did not. The use of double-quote characters depends on the variable type. You
should use double-quotes with character variables but not with number variables. You can list variable names, types and
lengths using the command:

variables
Number variables are marked Integer or Real. Character variables are marked ALPHA or string. If you use

double-quote characters with a number variable the SELECT command will function correctly only with the equality (=)
operator. Note that single inverted commas (e.g. COHORT = 'PGCE") will not work with either type of variable.

Entering commands in ANALYSIS

There are two methods of issuing commands to the ANALY SIS program. You may either type the command directly at
the keyboard or choose commands and variables from menus.

Pressing the key brings up a menu of available commands. To select a command from the menu you must first move
the highlighted bar using the arrow keys. When the highlighted bar is over the command you wish to use press [ver] to
select it. To execute the command press again. With most commands you will need to specify at least one variable.

Pressing the key brings up a menu of variables in the current dataset. Variables can be selected from the menu in the
usual way. To select just one variable point to it using the arrow keys and press . To select a group of variables
point to each one in turn and press the [+] key. When you have selected all the variables you need press . If you
select a variable by mistake you can deselect it using the |[—] key.

Getting help on commands

There are two ways of getting help on commands in ANALYSIS. If you press [r1] before you have typed a command
then ANALYSIS will present you with a menu with options for help on general topics and specific commands. Options
are selected from the menu in the usual way. If you want help on a specific command then type the command (e.g. LIST)
and press [F1]. ANALYSIS will respond with help for the command you typed.

If there is more than one screen of help on a particular topic or command then PgDn will be displayed in the bottom
right hand corner of the help window. Pressing [FeoNj will display the next screen of information.

Press to return to ANALYSIS.

Leaving ANALYSIS
To leave ANALYSIS press or type the command:
quit

and press . This will return you to the MSDOS prompt.

15



Producing charts

The shape of data
Charts are an ideal way of looking at how data in a variable is distributed. The distribution of a variable can be thought
of as the shape of the data in that variable. Using charts we can see the shape of the data and answer the following types
of questions about a variable:

Are the data values similar to each other?

Are the data values different from each other?

How different are the data values from each other?

Is there a single group of data values?

Are there several groups or clusters of data values?

Are a few data values very different from the majority of data values?
Questions like these cannot easily be answered by looking at a list of the data values in a variable. Charts allow us to see

important features in the data. A chart is a picture of the data that allows us to see the overall structure of data rather
than the confusing detail of individual data values.

16



Producing charts

ANALYSIS chart types

You can produce five different types of chart with ANALYSIS:

ANALYSIS Command Chart Type
pie variable Pie chart of the specified variable
bar variable Bar chart of the specified variable
histogram variable Histogram of the specified variable
line variable-1 [variable-2] Line plot of variable-1 [by levels of variable-2]
scatter x-variable y-variable [/r] scatter plot of two variables [with regression line]

Start ANALYSIS and retrieve the Stress and the Student Social Workerdataset by typing:

read sssw.rec

Suppose we want to examine the distribution of the ETHNIC (ethnic origin) variable. We could produce a BAR chart by
typing:

bar ethnic

After examining the chart, we can remove it from the screen by pressing (the graph does not appear in the output
screen). You can produce a HISTOGRAM of the MDP (depersonalisation) variable using the HISTOGRAM command:

histogram mdp
You can produce a PIE chart of the MARITAL (marital status) variable using the PIE command:
pie marital
or a LINE plot (frequency polygon) of the MDP (depersonalisation) variable using the LINE command:
line mdp
You can also use the LINE command to examine the difference between groups. The command:
line mdp sex

shows separate lines for males and females. The labels for the lines (1 and 2) are taken from the values of the SEX
variable (i.e. 1 = MALES, 2 = FEMALES).

To produce a SCATTER plot of two variables, showing how one varies with the other, use the SCATTER command
which takes the general form:

scatter x-variable y-variable

The first variable listed (x-variable) will be plotted along the horizontal (x) axis and the second variable listed (y-
variable) will be plotted along the vertical (y) axis as in:

scatter ghg mee

If you add /1’ to the end of a SCATTER command it will display a regression line showing the linear (straight line)
relationship between the two variables:

scatter ghqg mee /r

17



Chart types and their uses

Analysis chart types and their uses

Each type of chart has a different use. The table below summarises their use:

Chart Examples Description
PIE pie cohort Used to display the proportion (percentage) of cases for each value of a

pie living categorical variable. Segments of the pie represent the proportion of cases with
different values of the variable. Pie charts should be used for non-ordered data
(e.g. sex). They are not appropriate for ordered data (e.g. age groups) and can
be difficult to read when used to chart variables with more than five or six
values (categories). Bar charts are preferred to pie charts when used to chart
ordered data or non-ordered data with more than five or six categories.

BAR bar age Used to display the count of cases in each category of a categorical variable.
bar living Vertical bars represent counts of cases with different values of the variable.
bar ethnic Bar charts differ from histograms in having bars separated by spaces and in

omitting counts for values (categories) with a count of zero.
HISTOGRAM histogram ghq Used to display the distribution of values in a continuous variable. Vertical
histogram mee bars represent counts of records with different values of the variable.
Histograms differ from bar graphs in having the bars contiguous (not separated
by spaces) and in displaying counts for values with a count of zero.
LINE line ghq Used to display the distribution of values in a continuous variable. Points on
line ghq sex the line represent counts of cases with different values of the variable. More
than one line may be charted by giving the name of an additional (categorical)
stratifying variable. Charts with multiple lines can be difficult to read when the
stratifying variable has more than three or four categories (i.e. when the chart
displays more than three or four lines). Line charts are often used to show
trends or movement in the value of a variable over time (time-series).
SCATTER scatter mee ghq | Used to investigate and display the relationship between two continuous

variables. Points on the scatter plot represent pairs of values (i.e. the values for
each of the variables within the same case). The first value (x) defines the
horizontal position of the point. The second value ()’) defines the vertical
position of the point. For example, the value pair (3,4) would be represented
as:

X

A non-random appearance to the plot indicates that there is an association
between the two variables.

18




Practical exercises

Variables and variable names

For a full explanation of variables, their names, and their codes refer to the table on page 10 or on the inside back cover
of this book.

Exercise 1 - Examining a dataset
How many cases are there in the dataset stored in SSSW.REC?

SELECT only those persons who are LIVING alone. Use BROWSE or LIST to see how many records are
selected? How many records are selected in each of the ACADEMIC, PGCE, and SOCIAL WORK groups?

Clear the SELECTion so that you can continue to work with all of the cases.

SELECT only those persons who are not White Europeans. Use BROWSE or LIST to see how many records
are selected? How many records are selected in each of the ACADEMIC, PGCE, and SOCTAL WORK
groups?

Clear the SELECTion so that you can continue to work with all of the cases.

SELECT only those persons who are both West-Indian and female. Use BROWSE or LIST to see how many
records are selected? How many records are selected in each of the ACADEMIC, PGCE, and SOCIAL WORK

groups?

Clear the SELECTion so that you can continue to work with all of the cases.

Exercise 2 - Producing charts

Produce a BAR chart of MARITAL status. Which is the most common marital status? Are there groups with
less than 10 persons - if so, which ones?

Produce a PIE chart of AGE. What percentage of the study population was over 25 years old?

Produce a HISTOGRAM, PIE chart, and LINE plot of the GHQ-28 (GHQ) score. Which chart do you think is
the most appropriate and why? What was the highest and lowest GHQ-28 score recorded for any person?

Produce a SCATTER plot of the GHQ-28 (GHQ) variable and the emotional exhaustion (MEE) variable.
Produce the same chart again but with a regression line.

19



Summarising distributions

Frequency distributions

The frequency distribution, percentage frequency distribution and cumulative percentage frequency distribution of a
variable can be produced using the FREQ command:

freq marital
This can be done for several variables in the same command:

freq marital age ethnic

The FREQ command produces a table listing counts, percentages, and cumulative percentages for each value of the
specified variable. If the variable is numeric, the FREQ command will also display some summary statistics which may
(or may not be) meaningful:

MARITAL | Freq Percent Cum.
________ +_______________________
1 | 32 21.1% 21.1%
2 | 90 59.2% 80.3%
3 | 5 3.3% 83.6%
4 ! 4 2.6% 86.2%
5 | 21 13.8% 100.0%
________ +_______________________
Total | 152 100.0%
Sum = 348.00
Mean = 2.29
Standard deviation = 1.23

In this case the summary statistics (sum, mean, standard deviation) are meaningless because MARITAL (marital status)
is a categorical variable (i.e. it contains codes that indicate membership of mutually exclusive categories). The quoted
value for the mean (2.29) does not point somewhere between being single and divorced. The mean and standard
deviation are not of use when dealing with categorical data. Many ANALYSIS commands will provide summary
statistics and the results of statistical tests whether they are appropriate or not. It is up to you to decide if the output of
any command is relevant.

Use the [[F1] help key to find out more about the FREQ command. Practice using the FREQ command with other
variables.

Examine the output of the FREQ command carefully, making sure that you can interpret it.
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Practical exercise

Variables and variable names

For a full explanation of variables, their names, and their codes refer to the table on page 10 or on the inside back cover
of this book.

Exercise 3 - Summarising distributions

Use the FREQ command to examine the distribution of the ROSENBERG score. How many people had a
ROSENBERG score of less than or equal to fifteen? What was the most common ROSENBERG score? How
many people had a ROSENBERG score greater than thirty?

Use the FREQ command to examine the distribution of the ETHNIC variable. What percentage of subjects
were Indian? What percentage were Bangladeshi? What percentage were not White European?

The table below was produced using the command FREQ ETHNIC. Examine the table carefully and mark on
the table the positions of the values of the variable, the counts for each value of the variable, the percentage for
each value of the variable, the cumulative percentages, and the total number of cases:

ETHNIC | Freq Percent Cum
_______ +_______________________
1 1 1 0.7% 0.7%
2 i 6 3.9% 4.6%
3 1 9 5.9% 10.5%
4 1 2 1.3% 11.8%
5 1 3 2.0% 13.8%
6 1 1 0.7% 14.5%
7 1 2 1.3% 15.8%
9 | 1 0.7% 16.4%
10 1 110 72.4% 88.8%
11 ! 17 11.2% 100.0%
_______ e
Total | 152 100.0%
Sum = 1379.00
Mean = 9.07

Standard deviation 2.54

What problems might there be in using the sum, mean and standard deviation to summarise this distribution?

Use the BAR or PIE command to chart the distribution of the ETHNIC variable.
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Summarising distributions

Categorical variables

Variables such as ETHNIC, SEX, MARITAL, and the AGE variable (which is grouped into ‘25 and under’ and ‘over
25’) are stored as a set of mutually exclusive codes. Such variables are known as categorical variables. The MARITAL
variable, for example, is coded:

Code Meaning
1 Married
2 Single
3 Divorced
4 Separated
5 Cohabiting
6 Widowed

With categorical variables it makes sense to use the FREQ command to produce a frequency distribution as this allows
us to investigate the count (i.e. number) and proportion of cases that belong to each group and to identify groups with
many or few members:

MARITAL | Freqg Percent Cum.
________ e~
1 | 32 21.1% 21.1%
2 H 920 59.2% 80.3 <- Largest (modal) group
3 i 5 3.3% 83.6%
4 H 4 2.6% 86.2% <- Smallest group
5 | 21 13.8% 100.0%
________ o
Total | 152 100.0%
Sum = 348.00 <- Meaningless for categorical variables
Mean = 2.29 <- Meaningless for categorical variables
Standard deviation = 1.23 <- Meaningless for categorical variables

Beware of the summary statistics presented below this frequency table as they are meaningless for categorical variables
such as ETHNIC, SEX, and MARITAL.

Continuous variables

Some variables, such as GHQ, ROSENBERG, MEE, MDP, and MPA, hold continuous data. A frequency distribution is
of different use with such variables as each value will account for only a small proportion of cases and does little to help
us understand how the variable is distributed. As an example, produce a frequency distribution of the MPA variable by
issuing the command:

freq mpa

If you study the resulting table closely enough you will be able to extract some useful information from it.
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Frequency distributions of continuous data

Summarising continuous data with a frequency table

This is the frequency distribution of the MPA variable. Important information has been highlighted:

MPA | Freqg Percent Cum.
______ o __
5 | 1 1.2 1.2% <- minimum value
13 | 1 1.2% 2.4%
14 | 2 2.4% 4.8%
20 | 1 1.2% 6.0%
22 | 1 1.2% 7.2%
23 | 2 2.4% 9.6%
25 | 3 3.6% 13.3%
26 | 2 2.4% 15.7%
27 | 2 2.4% 18.1%
28 | 1 1.2% 19.3%
29 | 3 3.6% 22.9%
30 | 4 4.8% 27.7%
31 | 4 4.8% 32.5%
32 | 5 6.0% 38.6%
33 | 2 2.4% 41.0%
34 | 10 12.0 53.0% <- most common (modal) & middle (median) values
35 | 6 7.2% 60.2%
36 | 4 4.8% 65.1%
37 | 6 7.2% 72.3%
38 | 4 4.8% 77.1%
39 | 5 6.0% 83.1%
40 | 5 6.0% 89.2%
42 | 3 3.6% 92.8%
43 | 2 2.4% 95.2%
44 | 2 2.4% 97.6%
45 | 1 1.2% 98.8%
46 | 1 1.2% 100.0% <- maximum value
______ o
Total | 83 100.0% <- number of observations (cases)
Sum = 2754.00
Mean = 33.18 <- mean

Standard deviation 7.47 <- standard deviation

The highlighted information is known as the seven figure summary and can be used to summarise the distribution of
continuous data. The seven summary measures are:

summary measure formula description
minimum NONE lowest value in the dataset
median NONE middle item in the dataset
mode NONE most common value in the dataset
maximum NONE highest value in the dataset
number of observations () NONE number of observations (cases)
mean (X) Zﬁ sum of the observations divided by the number
of observations
n

a measure of how much the distribution varies
around the mean

standard deviation

Some texts refer to this as the six figure summary. This is because they replace the minimum and maximum with the
range which is the difference between the maximum value and the minimum value.

Note that in this example the modal (most frequent) and median (middle) values are the same. This will not always be
the case.
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Summarising distributions of continuous data

The seven figure summary

With continuous data we are not interested in the counts of cases for each particular height, weight, or score. We are
more interested in the complete distribution. This can be summarised with two separate measures: A measure of the
central tendency and a measure of the variability of the data. The seven figure summary yields both measures:

Measuring Measure
central tendency mode
median
mean
variability range (maximum - minimum)
standard deviation

To understand why you need to examine both central tendency and variability consider the following two distributions:

100 —

count

value 100

The two distributions shown on the graph have similar mean, median, and modal values. If we just used these measures
of central tendency to describe the distributions we would not be describing them properly. We would conclude that they
were the same as each other. As well as reporting the central tendency we also need to report the variability of the two
distributions using the range and the standard deviation:

measure wide narrow
mean 50 50
median 50 50
mode 50 50
range 100 50
standard deviation 15 8

This allows us to see that one distribution has a wider range of values (i.e. it is more variable) than the other.
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Summarising distributions of continuous data

How the standard deviation measures variability

The formula for the standard deviation appears complicated:

but it can be easily understood once broken down into its component steps. The formula relies on subtracting the mean
from each data value:

X—X

and summing (adding up) the deviations (differences):

D (x=%)

The positive and negative deviations will cancel each other out (giving zero) so each of the deviations is squared
(multiplied by itself) to give positive values before summation:

> (x—%)’

The sum of the squared deviations is divided by the number of cases contributing to the mean minus one:

> (x—%)’

(n=1)

This gives a measure of average deviation from the mean which is known as the variance. The variance is expressed in
squared units which are difficult to interpret. To get over this problem, the square root of the variance is used:

> (x—x)’

(n=1)

This measure is known as the standard deviation and is a measure of average deviation from the mean expressed in the
original unit of measure. The more variable the data, the larger the standard deviation will be.

The Greek letter sigma (X) is used in statistical formulae to denote the sum of a series of numbers. Squaring a number

(multiplying a number by itself) is a convenient way of turning negative numbers into positive numbers and is used in
many statistical formulae for this purpose.
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Standard deviation - worked example

Calculating the standard deviation

The table below shows four data points, their sum, and their mean:

Data

Sum 2
Mean

gjol|loJlw

The first step in calculating the standard deviation is to subtract the mean from each data point to give the deviation of
each data point from the mean:

Data point - mean
3 -2
7 +2
6 +1
4 -1
Sum 20 0
Mean 5

Because the deviations add-up to zero, they are squared to make them all positive numbers:

Data point - mean (point - mean)?

3 -2 4

7 +2 4

6 +1 1

4 -1 1

Sum 20 0 10
Mean 5

Dividing the sum of the squared deviations by the number of data points minus one gives us the variance:

10/(4-1) =333

Taking the square root of the variance gives us the standard deviation:

/333 =182
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Standard deviation and degrees of freedom

Why use n - 1 instead of n to calculate the standard deviation?

The standard deviation is calculated by taking the square root of the sum of the squared deviations from the mean
divided by the number of cases minus one:

Note that n - / is used to calculate the average squared deviation. This is because subtracting the mean from each value
leads to the ‘loss’ of one item of data. The deviations may not be any group of » numbers. The sum of the deviations is
always zero. When n - / deviations are specified, the last one is determined by the condition that they sum to zero:

> (x-%)=0

The final deviation is the sum of the other deviations with a change of sign (i.e. a positive number will become negative
or a negative number will become positive). This is known as the loss of a degree of freedom. The deviations have n - 1
degrees of freedom because the final deviation has to have a particular value once n - / deviations are specified. You
can see this ‘loss’ in this example with four data points:

Data n deviations n - 1 deviations

3 -2 -2

7 +2 +2

6 +1 +1

4 -1 ??

Sum 20 0 +1
Mean S

The sum of n - I deviations determines the value of the missing deviation which is marked ‘??’ in the table. The sum of
n - 1 deviations is +1 so the missing deviation must be -1 because the sum of all deviations must be zero. As the missing
deviation can be determined from » - I deviations and the constraint that the sum of deviations must be zero, there are
really only n - I pieces of information (degrees of freedom) for the deviations.

The range and the standard deviation

Both the range and the standard deviation measure variability. The range is simple to calculate but has an undesirable
property. It is calculated using the two extreme values only (the minimum value and the maximum value). Any outliers
(extremely high or low values) will be included in these extremes making the range extremely sensitive to (potentially
erroneous or unrepresentative) outliers in the data. The standard deviation is often preferred to the range because all data
points (not just two) are used and it is less effected (but may still be distorted) by outliers in the data.
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Problems with the mean and standard deviation

The normal distribution

The mean and standard deviations describe a particular type of distribution very well. This distribution is symmetrical
and bell shaped with mean median and mode similar to each other:

mean, median, mode

standard deviation

Count
1

and is called the normal distribution. If your data has a very different type of distribution then the mean and standard
deviation may not describe the distribution well. With non-normal distributions it may be best to use alternative
measures of central tendency (e.g. the median) and variability (e.g. the range or inter-quartile distance) or apply a
transformation to your data to bring it closer to the normal distribution (types of distribution and the range of
transformations that can be applied to them are covered on pages 64 - 69).

Fortunately, the normal distribution is very common in nature. Many of the variables you collect will be normally
distributed and you will be able to use the mean and standard deviation to describe them accurately.

It is very unlikely that you will see a perfectly normal distribution each time you chart your data. Random variation in
the data will tend to make the distributions look ragged and may also make the distribution slightly non-symmetrical.
There will usually be a few extreme or outlier values in the left and right fails of the distribution. If the data values tend
to cluster in a symmetrical manner around a central value and there are progressively fewer and fewer data values as you
move outward from the middle value and there are no data values that are very far way from the bulk of the other data
values then you may safely assume that the data come from a variable that is normally distributed and that it is
reasonable to use the mean and standard deviation to summarise the distribution.
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Summarising distributions of continuous data

Calculating summary measures in analysis

ANALYSIS provides the MEANS command for dealing with continuous data. The MEANS command produces
summary measures by different levels of a grouping variable (e.g. a mean MPA score for each SEX). If we want to look
at the summary measures for a variable we must first create a new variable that contains the same value for each case
(this is a limitation of ANALYSIS). Issue the command:

define all <AAAAAAAAA>
all = "ALL CASES"

These two commands create a variable called ALL and set it to hold the value "ALL CASES" for every case in the
dataset. Issue the command:

means mpa all

to instruct ANALYSIS to calculate and display summary measures for the MPA variable. The command produces a
frequency table and a table showing summary measures:

ALL Obs Total Mean Variance Std Dev
ALL CASES 83 2754 33.181 55.784 7.469
ALL Minimum 25%ile Median 75%1ile Maximum Mode
ALL CASES 5.000 30.000 34.000 38.000 46.000 34.000

It is always a good idea to look at the frequency table as ANALYSIS will only report the first modal value if there is
more than one mode.

You can instruct ANALYSIS not to produce the frequency table with the MEANS command by adding ‘/n’ to the end of
the command:

means mpa all /n

Examine the output carefully and make sure that you can identify all of the measures of the seven figure summary. Note
that there are only eighty-three cases. This is because MPA was not collected for undergraduate psychology students.

In addition to the seven figure summary, ANALYSIS also reports the cut-point values for the quartiles:

ALL Obs Total Mean Variance Std Dev
ALL CASES 83 2754 33.181 55.784 7.469
ALL Minimum 25%ile Median 75%ile Maximum Mode
ALL CASES 5.000 30.000 34.000 38.000 46.000 34.000

These values divide the distribution into four equal sized groups and can also be a useful way of summarising a
distribution. The 25" percentile (lower quartile) and the 75™ percentile (upper quartile) are the boundary values for the
middle 50% of the data. The interquartile range or interquartile distance (i.e. 75" percentile - 25™ percentile) is
sometimes used as an alternative measure of variability. The advantage of using the interquartile range (instead of the
range or the standard deviation) is that it is not effected by outliers.
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Summarising distributions with charts

Categorical data

You can summarise categorical data using BAR and PIE charts. This is because these charts plot absolute counts (BAR
charts) and counts as a proportion (percentage) of the sample population (PIE charts). Issue the following commands:

pie marital
bar marital

Both charts show the same thing. They are graphical equivalents of the FREQ command. The BAR chart shows counts
and the PIE chart shows proportions (percentages).

Continuous data

Continuous data can be summarised using either histograms or line charts. Issue the following commands:

histogram mdp
line mdp

This sort of line chart is sometimes called a frequency polygon. You can also use the LINE command to show the
distribution of a continuous variable grouped by levels (values or categories) of a categorical variable. Issue the

command:

line mdp sex

The labels for the lines (1 and 2) are taken from the values of the SEX variable.
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Practical exercise

Variables and variable names

For a full explanation of variables, their names, and their codes refer to the table on page 10 or on the inside back cover
of this book.

Exercise 4 - Summarising distributions

Use the MEANS command to produce the seven figure summaries for the GHQ, ROSENBERG, MEE, MDP,
and MPA variables and complete the following table:

GHQ ROSENBERG MEE MDP MPA

number of cases

mode

median

mean

minimum

maximum

standard deviation

Use the HISTOGRAM command to graph the distributions of the GHQ, ROSENBERG, MEE, MDP, and
MPA variables.

The command:
histogram rosenberg

produces the following graph:

20

1s

Count

Mo R ORI B oW oM kMR R~ R H
ROSEMNBERS

Mark the mode, median, and mean, minimum, and maximum (from the previous part of this exercise) on this
graph.
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Creating and recoding variables

The DEFINE command

To create a new variable (e.g. GHQCASE) you first need to tell ANALYSIS what kind of variable GHQCASE will be
using the DEFINE command. Variable types that could be used for the new variable are:

Name Typical Values Variable Type DEFINE ‘Code’
GHQCASE 1,2 Number #
GHQCASE Y,N Logical (Yes/No) <Y>
GHQCASE +, - Character <A>
GHQCASE "CASE", "NOT CASE" Character <AAAAAAAA>

Issue the command:

define ghgcase <AAAAAAAA>

to create a new character variable called GHQCASE. The number of characters between the angle brackets (‘<’ and “>")
defines the length of new variable. Use the ANALYSIS help system to discover how other codes can be used with the
DEFINE command.

Press 4] BROWSE. You should see a blank column at the right hand side of the data file which has the heading
GHQCASE (you may need to press [=] or [crri]+[>] to see this new column). ANALYSIS has assigned a new character
column for this variable. At present all the values are blank (or ‘missing”).

Recoding continuous variables into categorical variables

Issue the command:

recode ghg to ghgcase 0-4="NOT CASE" 5-hi="CASE"

to RECODE the number variable GHQ into the character variable GHQCASE. The RECODE command must be issued
after defining the new variable. Your data file now has the original variable GHQ and a new variable GHQCASE. The
choice of cut-points for group membership is often arbitrary and can make a difference to the results of analysis. With
variables such as GHQ it is valid to choose a cut-point of five because the GHQ-28 score was developed to ensure that
this cut-point was not arbitrary. Sometimes an agreed definition of cut-points for (e.g.) high and low groups for a
particular continuous measure will not be available. With these variables, you might choose cut-points such as the mean,
median, mode, or quartiles.

After using RECODE you should always check to see if the command has had the expected result using the LIST or
BROWSE commands:

list ghg ghgcase
browse ghqg ghgcase

An alternative way of recoding data is to use the IF ... THEN command. Try this by typing:

define meegroup <AAAAAAAAAAAA>

if mee <= 16 and mee <> . then meegroup = "LOW"
if mee >= 17 and mee <= 33 then meegroup = "INTERMEDIATE"
if mee >= 34 then meegroup = "HIGH"

In this example the lower and upper quartiles (found using the MEANS command) have been chosen as cut-points.
Check the results of the IF ... THEN commands using the BROWSE command (you will need to press or
[cri+[=2] to view the new column). Examine the distribution of MEEGROUP using the FREQ command.
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Creating and recoding variables

Another use for RECODE

A problem with the LINE and HISTOGRAM commands in ANALYSIS is that they do not group data automatically.
This can often make it difficult to see the underlying distribution. Enter the command:

histogram mee

It is difficult to see the underlying distribution. Issue the commands:

define meegrp ##
recode mee to meegrp 0-9=0 10-19=10 20-29=20 30-39=30 40-49=40 50-59=50

to group the values of the MEE variable into six groups (or intervals). Use the BROWSE or LIST command to check
that the commands have had the desired effect. Issue the command:

histogram meegrp
The underlying distribution is now easier to see.
There are four rules that you should follow when recoding continuous data into intervals:

1. The groups you create must be mutually exclusive. The same value must not be assigned to more than one
group. For example, a RECODE command with the form:

recode mee to meesame 0-10=0 10-20=10 20-30=30
is ambiguous for cases where MEE = 10 and MEE = 20.

2. The intervals should be of the same width. Different interval widths can make the histogram difficult to
interpret. The commands:

define meediff ##

recode mee to meediff 0-9=0 10-19=10 20-24=20 25-29=25 30-60=30
histogram meediff

give a wrong picture of the underlying distribution of the MEE variable.

3. You should choose enough groups (i.e. the groups should be narrow enough) to show some of the variation in
the data. The commands:

define meefew ##

recode mee to meefew 0-32=0 30-60=30
histogram meefew

also give a wrong picture of the underlying distribution of the MEE variable. Between five and ten groups is
usually sufficient.

4. The groups must cover all values of the variable being grouped.
These rules only apply to investigating the underlying distribution of a variable and need not apply to grouping a
variable in another context. ANALYSIS provide a quick way of recoding data into equal width intervals using the BY

keyword. The commands:

define ghgquick <AAAAAAAA>
recode ghg to ghgquick by 5

Will recode the GHQ variable into groups of width five.
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Creating and recoding variables

Recoding categorical variables

So far we have used the RECODE and IF ... THEN commands to RECODE continuous variables into categorical
variables. You can also use these commands to RECODE categorical variables.

One of the objectives of the Stress and the Student Social Workerstudy was ‘To determine whether students
undertaking professional training exhibited higher stress scores than undergraduate students’. The COHORT variable
records which group each individual case belongs to:

COHORT | Freq Percent Cum

____________ o
ACADEMIC | 69 45.4% 45.4%
PGCE | 33 21.7% 67.1%
SOCIAL WORK | 50 32.9% 100.0%
____________ o

These three groups need to be collapsed into two groups in order to explore this hypothesis. To do this we must first
define a new variable:

define profession <A>
and then use the IF ... THEN command to create the two groups:
if cohort "ACADEMIC" then profession = "-"

if cohort = "PGCE" then profession = "+"
if cohort = "SOCIAL WORK" then profession = "+"

and finally use the BROWSE command to check the effect of these commands:

browse cohort profession
Now that we have two variables GHQCASE and PROFESSION which are coded as binary categorical variables we can
use the TABLES command to produce a two-by-two table to investigate the hypothesis that students undertaking

professional training exhibit higher stress scores than undergraduate students:

tables profession ghqgcase
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Two-by-two tables

Two-by-two tables : Naming of parts

Measures of association between two variables are easily studied by means of two-by-two contingency tables. Such a
table is presented below:

Outcome
Exposure | Cases | Non-Cases | Totals
———————————— e ettt e e
Present | a | b | a+b
———————————— e ettt e e
Absent | c | d | c+d
____________ +_______________________________+______________
Totals | a + c | b + d | a+b+c+ d
a = number exposed and ill
b = number exposed and not i1l
c = number unexposed and i1l
d = number unexposed and not ill
a + b = number exposed
c + d = number unexposed
a + ¢ = number ill
b + d = number not ill
a +b + c+ d= number in study

With the Stress and the Student Social Workerstudy data, the command:
tables profession ghqgcase

produces the following table:

GHQCASE

PROFESSION |CASE  NOT CASE | Total
___________ t——_—_—_—_— - — —
! 62 21 4 83

- 29 40 | 69
___________ A SR
Total | 91 61 | 152

as well as some summary statistics which we will cover later in the book. In this table our exposure variable is
PROFESSION and our outcome variable is CHQCASE. Using the terms introduced above we have:

a = 62 = number exposed and ill
b = 21 = number exposed and not ill
c = 29 = number unexposed and ill
d = 40 = number unexposed and not ill
a + b = 83 = number exposed
c + d = 69 = number unexposed
a + c = 91 = number ill
b + d = 61 = number not ill
a+ b+ c+ d=152 = number in study

In this example exposed means “‘undergoing professional training’ and i// means ‘having a GHQ-28 score of five or
more’. Make sure that you can identify these figures in the table before proceeding.
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Two-by-two tables

The absolute risk

The absolute risk is the risk of an outcome happening to an individual belonging to a given population. This can be
calculated from a 2-by-2 table as:

(a+c) / (a+b+c+ d

This is number of people experiencing illness divided by the total population at risk. From the table:

GHQCASE

PROFESSION |CASE NOT CASE | Total

___________ +_________________+______

+ o 62 21 ! 83

- 29 40 | 69

___________ T

Total | 91 61 | 152

The absolute risk can be calculated as:

(a+c) / (a+b+c+d =91/ 152 = 0.599 = 59.9%

Each person in the Stress and the Student Social Workerstudy ran a risk of 59.9% of having a GHQ-28 score of five
(5) or more. This is the same as saying that 59.9% of people in the study can be considered as ‘cases’ as defined by their
GHQ-28 score.

The absolute risk measures the absolute magnitude of (e.g.) a health problem in a population but provides no
information regarding the association between risk factors (exposure variables) and outcomes. It is simply the
proportion of individuals with a particular outcome in the study population.

It is only valid to calculate an absolute risk with data from a cross-sectional or cohort study (i.e. where members of the
study population are selected according to their exposure status). It is not valid to calculate an absolute risk in this way
with data from a case-control study (i.e. where members of the study population are selected according to their outcome
status). In a case-control study of the stress among social work trainees using 20 cases (a + ¢) and 20 controls (b + d) the
absolute risk would appear to be:

(a+c) / (a+b+c+d =20/ 40 = 0.50

If 10 cases (a + ¢) and 20 controls (b + d) had been selected the absolute risk would appear to be:

(a +c) / (a+b+c+d =10/ 30 =0.33

Both of these estimates differ from the frue absolute risk among the 152 persons in the study. It is not valid to calculate
an absolute risk with data from a case-control study.
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Two-by-two tables

Exposure specific risks

A more useful approach is to calculate exposure specific risks or attack rates. This yields a measure that can be
interpreted as the risk of an outcome given an exposure which can easily be calculated from a two-by-two table:

GHQCASE
PROFESSION |CASE NOT CASE | Total
___________ SO
| 62 21 | 83
i 29 40 | 69
___________ S SO
Total | 91 61 | 152

In this table the exposure specific risk of being a 'case' can be calculated as:

a/ (a+Db) =62/ (62 +21) =62/ 83 =0.747 = 74.7%

Each person in the study undergoing professional training (i.e. "PGCE" or "SOCIAL WORK") ran a risk of 74.7% of
being defined as a ‘case’ based on their GHQ-28 score. This is the same as saying that 74.7% of people who are
undergoing professional training are ‘cases’. This method makes specific reference to risk factors and will vary with
each tabulation of exposure by outcome.

The exposure specific risk will be different for each exposure whereas the absolute risk does not vary with exposure.
The exposure specific risk estimates the risk of an outcome given an exposure but reveals little about the excess risk

associated with exposure.

It is not valid to calculate an exposure specific risk with data from a case-control study.
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Two-by-two tables

Relative risk

One way of estimating the excess risk due to exposure is to compare exposure specific risks between exposed and
unexposed groups. Given the following table:

GHQCASE
PROFESSION |CASE NOT CASE | Total
___________ SO
| 62 21 | 83
! 29 40 | 69
___________ +_________________+______
Total | 91 61 | 152

It is possible to calculate the risk of being a ‘case’ for those undergoing professional training as:

a/ (a+Db) =62/ (62 +21) =62 / 83 =0.746 = 74.7%

and the risk of being a ‘case’ for those not undergoing professional training as:

c/ (c+d) =29/ (29 + 40) =29 / 69 = 0.420 = 42.0%

The easiest way of comparing these two risks is as a ratio. This is the risk of being a ‘case’ having been exposed
divided by the risk of being a ‘case’ having not been exposed and is calculated as:

(@/ (@a+b)) / (c/ (c+d)) = (62/83) / (29 / 69) =0.747 / 0.420 = 1.78
A person undergoing professional training was 1.78 times as likely to be a ‘case’ as an academic undergraduate.

This ratio of risks is described as the relative risk or risk ratio. This is always greater than zero. A relative risk of less
than one implies a decrease in risk associated with a given exposure and that the exposure may protect against an
outcome. A relative risk of greater than one implies an increase in risk associated with a given exposure. A relative risk
of one implies no increase or decrease in risk associated with exposure. In summary:

Relative Risk Interpretation
<1 exposure may protect against outcome
=1 exposure not associated with outcome
> 1 exposure may increase risk of outcome
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Two-by-two tables

Odds ratio

The examples given above assume that it is valid to calculate a relative risk of outcome. It is only valid to calculate the
relative risk of outcome in a study which has net selected subjects according to their outcome status (i.e. a study which
has not selected cases or controls). The relative risk of an outcome is a valid measure of excess risk in a cohort study,
where subjects have been selected according to their exposure status, or in a cross-sectional study.

In a case-control study an arbitrary number of cases and controls are selected for entry into the study. In this situation it
is no longer reasonable to use the total numbers of ‘ill” and ‘not-ill” persons (cases and controls) to calculate exposure-
specific risks and relative risks. Another measure of association must be used which uses only the internal (rather than
total) values in the table. This measure is the odds ratio. Consider the following table:

GHQCASE
PROFESSION |CASE NOT CASE | Total
___________ SO
| 62 21 | 83
| 29 40 | 69
___________ +_________________+______
Total | 91 61 | 152

In this example the odds of being a ‘case’ given professional training can be calculated as:
a/b=62/21=2.95
The odds of being a ‘case’ in the absence of professional training can be calculated as:
c/d=29/ 40 =0.73
The odds ratio can be calculated as:
(a /b) / (c /d) = (62 / 21) / (29 / 40) = 2.95 / 0.73 = 4.07

Undergoing professional training was associated with a 4.07 fold increase in the odds of being a ‘case’. The odds ratio is
interpreted a similar way to the relative risk:

Odds Ratio Interpretation
<1 exposure may protect against outcome
=1 exposure not associated with outcome
> 1 exposure may increase risk of outcome

Odds ratios and relative risks

The odds ratio and relative risk measure excess risk in an exposed group compared to an unexposed group. In cohort
and cross-sectional studies the odds ratio will overestimate the effect of exposure and the relative risk is preferred. In
case-control studies the relative risk cannot be estimated and the odds ratio must be used. In case-control studies of rare
outcomes the odds ratio provides a valid estimate of the relative risk.

The relative risk is a valid measure of excess risk to use with the Stress and the Student Social Workerdata because
subjects were selected by their exposure status ("ACADEMIC", "PGCE", or "SOCIAL WORK") rather than their
outcome status (e.g. their GHQ-28 score). It would not be valid to use the relative risk if a certain number of cases and
controls had been selected for the study (e.g. 20 cases and 20 controls). In this case the odds ratio would be the valid
measure of excess risk.
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Measures of risk

Two-by-two tables

If we examine the two-by-two table:

PROFESSION |CASE
___________ o
i 62
- 29
___________ +_________
Total | 91

GHQCASE
NOT CASE | Total
________ b
21 | 83
40 | 69
________ +______
61 | 152

of PROFESSION by GHQCASE closely we can extract the following information:

exposed and ill profession = + and ghgcase = CASE a 62
exposed and not ill profession = + and ghgcase = NOT CASE b 21
unexposed and ill profession = - and ghgcase = CASE c 29
unexposed and not ill profession = - and ghgcase = NOT CASE d 40
exposed profession = + a+b 83
unexposed profession = - c + d 69
i1l ghgcase = CASE a + c 91
not ill ghqgcase = NOT CASE b + d 61
total records sum of all the cells in the table a+b+c+d 152

Identify these figures in the displayed table.

We can use this information to calculate various risk measures:
absolute risk (a+c) / (a+ b+ c+ d) 91 / 152 0.60
exposure specific risk a / (a + b) 62 / 83 0.75
relative risk (a / a+b) / (¢c/ c+d (62 / 83) / (29 / 69) 1.78
odds ratio (a / by / (c / d) 62 / 21) / (29 / 40) 4.07

Check that you understand how to obtain these risk measures presented in this table before proceeding.
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Two-by-two tables

Measures of risk

ANALYSIS calculates relative risks and odds ratios for two-by-two tables together with confidence limits:

Odds ratio 4.07
Cornfield 95% confidence limits for OR 1.93 < OR < 8.68
Relative risk of (GHQCASE=CASE) for (PROFESSION=+) 1.78

Greenland, Robins 95% conf. limits for RR 1.31 < RR < 2.41
(Biometrics 1985;41:55-68)

and will calculate the absolute risk and exposure specific risk if you issue the command:

set percents = on

before the TABLES command. This command instructs ANALYSIS to display row and column percentages in tables.
To see the effect of this issue the command:

tables profession ghqgcase

This command now produces the following output:

GHQCASE
PROFESSION |CASE NOT CASE | Total

83 <- Counts
54.6% <- Row percentages
<- Column percentages

The values in each cell of the table are presented as count, row percentage, column percentage. Examine the table. The
row percentage of the cell PROFESSION = "+" and GHQCASE = "CASE" is equivalent to the exposure specific risk or
attack rate (74.7%) and the row percentage of the column total for CHQCASE = "CASE" is the absolute risk (59.9%). If
you find the tables with percentages difficult to read try issuing the command:

set lines = on

This command instructs ANALYSIS to print separating lines between the cells of tables. To instruct ANALYSIS to stop
displaying cell percentages and separating lines issue the commands:

set percents = off
set lines = off

Use the ANALYSIS help system to find out what else you can change using the SET command.

The interpretation of the relative risk produced by the TABLES command depends on the orientation of the table. The
correct format for the TABLES command is:

tables risk-variable outcome-variable
The risk or exposure variable (e.g. PROFESSION) should always be the first variable you specify with the TABLES

command. The outcome variable (e.g. GHQCASE) should always be the second variable you specify with the TABLES
command.
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Two-by-two tables

Confidence intervals

Measures of exposure effect are subject to random variation. The calculated relative risk will differ from the true or
population relative risk because of random variation. If the study were to be repeated using different samples from the
same population the calculated relative risk would be slightly different for each sample. The sample relative risk is
considered to be the best estimate of the true relative risk. It is called the point estimate of the relative risk. The effect of
random variation can be accounted for statistically by calculating a range of values around the point estimate of the
relative risk that has a specified probability of including the true value of the relative risk. The specified probability is
called the confidence level and is usually 95% or, sometimes, 99%. The range of values that the true relative risk could
take is called the confidence interval. The endpoints (maximum and minimum) of the confidence interval are called the
confidence limits.

With a 95% confidence interval we are 95% sure that the true relative risk falls within the computed confidence interval.
We do not know for certain that the true relative risk lies within the confidence interval. The chances are 95% that the
true relative risk lies within the confidence interval. The chances are 5% that the true relative risk lies outside of the
confidence interval. There is a 2%2% chance of the true relative risk being below the lower confidence limit and a 2}42%
chance of the true relative risk being above the upper confidence limit.

Confidence intervals can be calculated for relative risks, odds ratios, absolute risks and exposure-specific risks. The
calculation of the confidence interval is complicated and is best left to purpose-designed computer programs such as
ANALYSIS.

Interpretation of the confidence interval

The following relative risk and 95% confidence limits have been calculated from the Stress and the Student Social
Worker data (using the command TABLES PROFESSION GHQCASE) for the association between undergoing
professional training and having a GHQ Score of five (5) or higher:

Relative risk of (GHQCASE=CASE) for (PROFESSION=+) 1.78
Greenland, Robins 95% conf. limits for RR 1.31 < RR < 2.41

The observed relative risk is 1.78. The true relative risk is likely to lie somewhere between 1.31 and 2.41. The true
relative risk is unlikely to be equal to one. It is reasonable to state that undergoing professional training was associated
with being a ‘case’.

The following relative risk and 95% confidence limits have been calculated from the Stress and the Student Social
Worker data for the association between gender and having a GHQ Score of five (5) or higher:

Relative risk of (GHQCASE=CASE) for (SEX=1) 0.99
Greenland, Robins 95% conf. limits for RR 0.74 < RR < 1.33

The observed of the relative risk is 0.99. The true relative risk is likely to lie somewhere between 0.74 and 1.33. It is not
unlikely that the true relative risk is equal to one. It is not reasonable to state that gender was associated with being a

‘case’.

The odds ratio is also a point estimate and the confidence interval is used in the same way.
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Two-by-two tables

Testing a hypothesis about association

Measures of exposure effect are subject to random variation. We can allow for this random variation by calculating a
confidence interval that is likely to include the true measure of exposure effect. The confidence interval can also be used
to test whether this association is likely to be real or whether it is likely to have arisen by chance. If the confidence
interval for the relative risk (or odds ratio) does not include one then the association is likely to be real. If the
confidence interval includes one then the association is unlikely to be real.

Another way of assessing the association between exposure and outcome variables is to use hypothesis testing or
significance testing. Statistical hypothesis testing relies on an assumption called the null hypothesis. This hypothesis
states that nothing interesting is happening in the data other than random variation (i.e. that there is no association
between an exposure and an outcome). The null hypothesis is used to test an alternative hypothesis that states that
something interesting or systematic is happening in the data. Statistical hypothesis testing involves comparing the
observed data with what we would expect the data to look like if the null hypothesis were true. Consider the following
table:

GHQCASE
PROFESSION |CASE NOT CASE | Total
___________ t——_—_—_—_— - — —
| 62 21 | 83

- 29 40 | 69
___________ U
Total | 91 61 | 152

The null hypothesis is that undergoing professional training is not associated with being a ‘case’. The alternative
hypothesis is that undergoing professional training is associated with being a ‘case’. The null hypothesis can be tested by
comparing the numbers in each cell of the table with the numbers that we would expect to see if the null hypothesis were
true.

From the table the proportion of people defined as ‘cases’ (absolute risk) is:

(a +c) / (a+b+c+d =91/ 152 = 0.598 = 59.8%

If the null hypothesis were true, the expected number of people being defined as ‘cases’ whilst undergoing professional
training would be 59.8% of 83 (i.e. the risk of being a case would not vary with exposure), or:

Expected(a] = 83 * (91 / 152) = 49.69

Expected numbers for each of the cells in the table can be calculated in a similar way:

Expected[a] = 83 * (91 / 152) = 49.69
Expected[b] = 83 * (61 / 152) = 33.31
Expected[c] = 69 * (91 / 152) = 41.31
Expected([d] = 69 * (61 / 152) = 27.69

These expected values can then be compared with the actual or observed values from the data.
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Two-by-two tables

Testing a hypothesis about association

Once the expected values have been calculated we can compare the table we observe from the data with the table we
would expect to see if the null hypothesis were true:

OBSERVED EXPECTED
GHQCASE GHQCASE

PROFESSION |CASE NOT CASE | Total PROFESSION |CASE NOT CASE | Total
——————————— e ettt B i T ittt e L
+ 62 21 | 83 + 49.69 33.31 | 83.00

- 29 40 | 69 - 41.31 27.69 | 69.00
——————————— o it e etaiate e LR e
Total | 91 61 | 152 Total | 91.00 61.00 1152.00

by subtracting the expected values from the values observed in the data:

GHQCASE
PROFESSION |CASE NOT CASE | Total
___________ e
+ | 12.31 -12.31 | 00.00
-1 -12.31 12.31 | 00.00
___________ +_________________+______
Total | 00.00 00.00 | 00.00

Positive and negative differences cancel each other out so we square the number in each cell to make them all positive
numbers:

GHQCASE
PROFESSION |CASE NOT CASE | Total
___________ t——_—_—_—_— - — —
| 151.54 151.54 1303.08
| 151.54 151.54 1303.08
___________ A S
| 303.08 303.08 |606.16

before dividing them by the expected values:

GHQCASE
PROFESSION |CASE NOT CASE | Total
___________ +_________________+______
i 3.05 4.55 | 7.60
- 3.67 5.47 | 9.14
___________ SO
Total | 6.72 10.02 | 16.74

The overall total of this table (16.74) is a measure of how much the observed data differs from the data expected under
the null hypothesis. It is called the chi-square statistic:

R E)zg
o £ 0

The Greek letter sigma () is used in statistical formulae to denote the sum of a series of numbers. Squaring a number
(multiplying a number by itself) is a convenient way of turning negative numbers into positive numbers and is used in
many statistical formulae for this purpose.

Under the null hypothesis there is a fixed probability of obtaining this particular chi-square value. If the probability of
obtaining 16.74 under the null hypothesis is small then the null hypothesis is unlikely to be true and we would assume
that there is an association between undergoing professional training and being a ‘case’. If the probability of obtaining
16.74 under the null hypothesis is large then the null hypothesis might be true and we would not assume that there is an
association between professional training and being a ‘case’.
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Chi-square, degrees of freedom, and p-values

Chi-squares, degrees of freedom, and p-values

The probability of observing a particular chi-square value is determined by the chi-square distribution. There is a
different chi-square distribution for each size of table. A large chi-square is more likely to arise from a large table (i.e. a
table with many cells) than from a small table (i.e. a table with few cells such as a 2-by-2 table). The more rows and
columns in a table the larger the chi-square value is likely to be. This is because there are more cells in which the
observed values are free to vary from the expected values. The number of cells in which the observed values are free to
vary from the expected values is called the degrees of freedom. In this table:

GHQCASE
PROFESSION |CASE NOT CASE | Total
___________ SO
i 62 ?? 83
i ?? ?? 69
___________ +_________________+______
Total | 91 61 | 152

knowing the value of one internal cell allows us to determine the values of the other three internal cells. This table has
one degree of freedom. The degrees of freedom in a table is calculated using the formula:

df = (number of rows - 1) * (number of columns - 1)

The degrees of freedom in a 2-by-2 table are:

df = (number of rows - 1) * (number of columns - 1) = (2 - 1) * (2 - 1) =1

The chart on the next page shows the probability of observing chi-square values at different degrees of freedom. Look at
the chi-square distribution for one degree of freedom. The probability of getting a chi-square value of 16.74 from a 2-
by-2 table is very small. This probability is referred to as the p-value and is the probability that the observed association
arose by chance. If we refer to the chi-square distribution with one degree of freedom in a set of statistical tables we
obtain a p-value of less than 0.001. The probability that the observed association arose by chance is less than 0.001 (i.e.
less than one in a thousand). It is unlikely that the observed association arose by chance. It is reasonable to reject the
null hypothesis of no association. It is generally considered safe to reject the null hypothesis with a p-value less than
0.05 (i.e. less than one in twenty). When the p-value is less than 0.05, the association between the row and column
variables is said to be statistically significant. Small p-values are more significant than large p-values: a p-value of
0.001 is more significant than a p-value of 0.01.

There are several chi-square tests. The one described here is called Pearson's chi-square. Another test of association is
Yates' corrected chi-square which uses the same formula but includes a correction factor and is used for two-by two
tables. Yates' corrected chi-square is always slightly smaller than Pearson's chi-square and will always yields a slightly
larger p-value. Most statisticians prefer Yates’ corrected chi-square because it is more conservative and less likely to
yield a significant p-value when the null hypothesis is true. Another test of association is Fisher’s exact test. This is
based on a distribution called the hypergeometric distribution and is net a chi-square test. Chi-square tests can yield
misleading results when expected numbers are small. Fisher's exact test is more robust and can yield reliable results with
small expected numbers. Fisher’s exact test should be used instead of a chi-square test when any of the cells in the 2-by-
2 table has an expected value of less than five. ANALYSIS will report Pearson's chi-square for all tables and Yate's
corrected chi-square for two-by-two tables. If an expected value in a two-by-two table is less than five then ANALYSIS
will also report Fisher's exact test. There are two p-values associated with Fisher’s exact test: the one-tailed p-value and
the two-tailed p-value. The one-tailed p-value is appropriate when we are interested in examining the effects of exposure
variables in one direction only (e.g. do they increase the risk of ILLness?). In other types of study we are usually
testing for any association and would use a two-tailed p-value. If in doubt you should use the two-tailed p-value. The
one-tailed p-value would be appropriate here because we are interested in examining the effects of an exposure variables
in one direction only (i.e. does undergoing professional training increase the probability of scoring five or more on
GHQ-28).
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Chi-squares, degrees of freedom, and p-values
The chi-square distribution

The chart below shows the probability of observing chi-square values at three different degrees of freedom:

P-values for chi-squares at different degrees of freedom
1 = -
1 ~
1 \\
N \ 1df
. N\ o
\ \ >
0.9 ‘\ ———154df|
. \
| A
' \
N \
) \
0.8 ’ \
N \
v \
\ \
N \
0.7 \
\ \
' \
' \
N \
v \
0.6 ! v
N \
' \
\ \
2 ‘- \
= v \
g 03 \
o N \
B \
. \
N 1
0.4 A
N A
I‘ A
\
\ \
. \
0.3 5 X
\‘ \
\ \
\ \
l‘ \
\ \
0.2 s \
\ \
Y \
\ \
\ \
\ \
| \
v \‘
0.1 'y
\
N
~
N
~
.\. \\~~
0 LTI " 1 ~1 """""" -+ 1
0 15 20 25 30
chi-square

Mark a chi-square value of 16.74 on the x-axis (chi-square on x-axis) and estimate the probability of calculating this
value from data in a 2-by-2 table (p-value on y-axis) if the null hypothesis were true.
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Two-by-two tables

Confidence intervals and significance tests

Both confidence intervals and significance tests can be used to test for an association between exposure and outcome
variables. They are related approaches to the same problem. If the 95% confidence interval for a relative risk does not
include one then the chi-square will have a p-value of less than 0.05 (5%). The confidence interval (or estimation)
approach is preferred as it provides an estimate of the magnitude and direction of the effect and the variability of the
estimate. The statistical significance testing approach only indicates the consistency of the data with the null hypothesis
and provides no estimate of the magnitude or direction of the effect. Both approaches are influenced by sample size.
Large numbers in cells will yield large chi-square values. Consider using a chi-square test to establish whether an
association exists between AGE and being a ‘case’:

GHQCASE
AGE | CASE NOT CASE | Total
___________ e
13 39 36 75
2 52 25 | 77
___________ +_________________+______
Total | 91 61 | 152

This table yields a chi-square statistic of 3.82 with a p-value of 0.05. If we assume that the sample size of the study had
been three times larger (by multiplying all cells in the table by three) the following table would result:

GHQCASE

AGE | CASE NOT CASE | Total
___________ t——_—_—_—_— - — —
1] 117 108 | 225

2 | 156 75 1 231
___________ N W
Total | 273 183 | 456

which yields a chi-square statistic of 11.45 (3 * 3.82) with a P-value of 0.0007. The chi-square value has been
influenced by the sample size. If we perform the same experiment but calculate the relative risk and confidence interval
we get the following results:

Relative risk of (GHQCASE=CASE) for (AGE=1) 0.77
Greenland, Robins 95% conf. limits for RR 0.59 < RR < 1.01

for the original table and:

Relative risk of (GHQCASE=CASE) for (AGE=1) 0.77
Greenland, Robins 95% conf. limits for RR 0.66 < RR < 0.90

for the table with increased sample size. The point estimate is the same but the confidence interval is narrower.
Increasing the sample size will give a smaller p-value and a narrower confidence interval.

You should never multiply the numbers in a 2-by-2 table to get a significant p-value or a narrower confidence
interval. The only valid method of increasing the sample size is to collect more data!
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Two-by-two tables

An example of ANALYSIS output

The following table was produced using the command TABLES PROFESSION GHQCASE. Important information has

been highlighted:
GHQCASE
PROFESSION |CASE NOT CASE | Total
___________ N R
+ | 62 21 | 83
- 29 40 | 69
___________ +_________________+______
Total | 91 61 | 152
Single Table Analysis
Odds ratio

Cornfield 95% confidence limits for OR

1.93 < OR < 8.68 <-

4.07 <- Odds Ratio

Confidence Limits

Relative risk of (GHQCASE=CASE) for (PROFESSION=+) 1.78 <- Relative Risk
Greenland, Robins 95% conf. limits for RR 1.31 < RR < 2.41 <- Confidence Limits
(Biometrics 1985;41:55-68)
Ignore relative risk if case control study.
Chi-squares P-values

Uncorrected: 16.74 0.00004292 <--- <- Chi-square/p-value

Mantel-Haenszel: 16.63 0.00004549 <---

Yates corrected: 15.41 0.00008674 <--- <- Corrected values

Notice that ANALYSIS produces three chi-square measures and p-values. With two-by-two tables you may quote either
the uncorrected or corrected values. The corrected value is preferred as it is more conservative and less prone to error.

Summary of measures introduced

The table below summarises the measures of effect and association introduced so far:

Measure Value Interpretation Notes
Relative risk <1 | decrease in risk not valid for case-control studies
=1 | no effect
> 1 | increase in risk
Odds ratio <1 | decrease in risk valid for case-control studies
=1 | no effect
> 1 | increase in risk
Confidence interval includes 1 | observed association could be | applies to relative risk / odds ratio
due to random variation
excludes 1 | observed association unlikely
to be due to random variation
P-value > 0.050 | observed association could be | applies to test statistic
due to random variation
< 0.050 | observed association unlikely
to be due to random variation
<0.010 | observed association very
unlikely to be due to random
variation
<0.001 | observed association
extremely unlikely to be due to
random variation
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Contingency tables

Tables larger than two-by-two

In tables larger than two-by-two it is difficult to calculate risk measures and so we must rely on significance testing.
Issue the command:

tables marital ghgcase

to investigate the association between marital status and being a ‘case’. The following table is produced:

GHQCASE

MARITAL | CASE NOT CASE | Total
___________ +_________________+______
13 23 9 1 32

2 | 48 42 90

3 3 2 5

4 4 0 1 4

5 | 13 8 | 21
___________ +_________________+______
Total | 91 61 | 152

Chi square = 6.24 <- Chi-square
Degrees of freedom = 4
p value = 0.18210692 <- p-value

If you examine the statistics that follow the table you will see that MARITAL status does not appear to be associated
with being a ‘case’. The p-value that ANALYSIS reports for the chi-square statistic is 0.18210692 (i.e. p > 0.05)
indicating that any differences between the values we observe in the table and the values we would expect if the null
hypothesis of no association were true could be due to random variation.

You can get a better understanding of what is going on in this table if you issue the command:
set percents = on

before issuing the TABLES command and examining the row percentages:

GHQCASE
MARITAL | CASE NOT CASE | Total
___________ +_________________+______
1 23 9 | 32 <- Counts
> 71.9% 28.1% > 21.1% <- Row percentages
| 25.3% 14.8% | <- Column percentages
2 48 42 | 90
> 53.3% 46.7% > 59.2%
! 52.7% 68.9% |
3 3 2 5
> 60.0% 40.0% > 3.3%
! 3.3% 3.3% |
4 | 4 0 | 4
> 100.0% 0.0% > 2.6%
! 4.4% 0.0% |
5 | 13 8 | 21
> 61.9% 38.1% > 13.8%
! 14.3% 13.1% |
___________ +_________________+______
Total | 9 61 | 152

If you examine the row percentages, you will see that the proportions of cases are similar for all values of the
MARITAL status variable (in this example they are always larger than the proportion of non-cases). In this case
GHQCASE is said to be independent of MARITAL status (i.e. GHQCASE and marital status are not associated with
each other). This observation can be quantified by the chi-square statistic and p-value associated with the table.

49



Writing-up
What you should quote in reports

If you are using two-by-two tables to analyse your data you should quote the relative risk (or odds ratio) and the
associated confidence interval. Remember to specify the confidence level as this can vary. A typical quote might be:

'We found professional training to be associated with a score of five or higher on the GHQ-28 scale (RR =
1.78, 95% C.I. 1.31-2.41)."

Some journals may require you to quote a chi-square and p-value. A typical quote might be:

'We found professional training to be associated with a score of five or higher on the GHQ-28 scale (Yates
chi-square = 15.41, p < 0.0001)."

Some may want both:

'We found professional training to be associated with a score of five or higher on the GHQ-28 scale (RR =
1.78, 95% C.I. 1.31 - 2.41, Yates chi-square = 15.41, p < 0.0001)."

If you are using contingency tables larger than two-by-two you should quote the chi-square, degrees of freedom, and the
associated p-value. A typical quote might be:

'We found no association between marital status and a score of five or higher on the GHQ-28 scale (chi-
square = 6.24,df =4, p = 0.18)."

When quoting p-values it is conventional to quote the calculated value if it is above p = 0.05 or the threshold value (P <
0.05,p<0.01, p<0.001, p<0.0001) if it is below the threshold value (i.e. for significant results).
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Practical exercise

Variables and variable names

For a full explanation of variables, their names, and their codes refer to the table on page 10 or on the inside back cover
of this book.

Exercise 5 - Recoding variables and two-by-two tables

Use the RECODE or IF ... THEN commands to recode the ROSENBERG variable into two groups (‘(HIGH'
and 'LOW-NORMAL"). Use to lower three quartiles of the distribution of the ROSENBERG variable for the
'LOW-NORMAL' group and the upper quartile for the '"HIGH' group. You can find the quartiles of the
distribution of the ROSENBERG variable using the MEANS or FREQ commands. Make sure that the cut-
points you specify with the RECODE or IF ... THEN commands are not ambiguous (i.e. ensure the two groups
do not overlap).

Use the LIST or BROWSE command to check that the RECODE or IF ... THEN commands you used have
worked correctly.

Use the TABLES command to investigate the association between PROFESSION and your new variable.

Use the TABLES command to investigate the association between AGE, SEX, MARITAL, and ETHNIC and
your new variable.
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Tables with subsets of data

Selecting cases for ANALYSIS

The second question of interest to the researchers in the Stress and the Student Social Workerstudy was ‘To
determine whether students undertaking professional training in social work exhibited higher stress levels than those
undertaking postgraduate teacher training’. The COHORT variable records which group each individual case belongs to:

COHORT i Freq Percent Cum

____________ o

ACADEMIC | 69 45.4% 45.4%

PGCE | 33 21.7% 67.1%

SOCIAL WORK | 50 32.9% 100.0%

____________ o
Total | 152 100.0%

Use the SELECT command to instruct analysis to ignore the data from the ACADEMIC students:

select cohort <> "ACADEMIC"

and use the TABLES command to investigate the association between COHORT and GHQCASE:

tables cohort ghqgcase

which produces the following two-by-two table:

GHQCASE
COHORT | CASE NOT CASE | Total
____________ Y T
PGCE I 30 3 33
SOCIAL WORK | 32 18 | 50
____________ +___________________+______
Total | 62 21 | 83

Single Table Analysis
Odds ratio 5.63
Cornfield 95% confidence limits for OR 1.34% < OR < 27.19*%
*May be inaccurate

Relative risk of (GHQCASE=CASE) for (COHORT=PGCE) 1.42
Greenland, Robins 95% conf. limits for RR 1.12 < RR < 1.80
(Biometrics 1985;41:55-68)
Ignore relative risk if case control study.

Chi-squares P-values
Uncorrected: 7.62 0.00578402 <---
Mantel-Haenszel: 7.52 0.00608612 <---
Yates corrected: 6.26 0.01235539 <---

Note that the SELECT command has excluded those cases where COHORT ="ACADEMIC" from the analysis (the ‘<
>’ operator means ‘not equal to ...").

Examine the relative risk and its associated confidence limits. The relative risk is greater than one indicating a higher
risk of being a ‘case’ for PGCE students than for SOCIAL WORK trainees. The confidence interval does not include
one indicating that the observed association (or increase in risk) is unlikely to be due to random variation. The p-value
for Yates chi-square is less than 0.05 which also indicates that the observed association (or increase in risk) is unlikely
to be due to random variation.

The data do not support the researchers' hypothesis. PGCE students are more likely to be ‘cases’ than SOCIAL WORK
trainees (RR = 1.42, 95% C.I. 1.12 - 1.80, Yates chi-square = 6.26, p < 0.05).
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Practical exercise

Variables and variable names

For a full explanation of variables, their names, and their codes refer to the table on page 10 or on the inside back cover
of this book.

Exercise 6 - Recoding, subsets, and two-by-two tables

Use the RECODE or IF ... THEN commands to recode the MEE and MDP variables into two groups ('CASE'
and 'NOT CASE"). Use to lower three quartiles of the distributions of these variables for the NOT CASE'
group and the upper quartile for the 'CASE' group. You can find the quartiles of the distribution of a variable
using the MEANS or FREQ commands. Make sure that the cut-points you specify with the RECODE or IF ...
THEN commands are not ambiguous (i.e. ensure the two groups do not overlap).

Use the LIST or BROWSE command to check that the RECODE or IF ... THEN commands you used have
worked correctly.

Use the TABLES command to investigate the association between COHORT and your new variables. Does the
evidence support the researchers' hypothesis?
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Categorical and continuous data

Recoding and information loss

So far we have been comparing groups and testing hypotheses using categorical data that we derived from continuous
data. The problem with this approach is that when we collapse a continuous variable into groups we are losing
information. Also, it is not always possible to set sensible threshold values that divide the data into groups. Recoding the
GHQ score variable was not problematic as it is conventional to define a ‘case’ as a person scoring five or higher using
the GHQ-28 scale. With other data it will not always be so easy to define groups. In such cases you will need to use
analytical techniques that deal with continuous data. One technique that can be applied to such data is analysis of
variance (also called ANOVA). This technique is used to test the null hypothesis that the several population means are
equal.

Have a look at the mean GHQ score for each category of the COHORT variable by issuing the command:
means ghqg cohort /n

Ignore the lengthy statistical output and concentrate on the summary statistics for each group:

COHORT Obs Total Mean Variance Std Dev

PGCE 33 384 11.636 38.614 6.214

SOCIAL WORK 50 422 8.440 42.660 6.531

Difference 3.196

COHORT Minimum 25%ile Median 75%ile Maximum Mode
PGCE 0.000 8.000 10.000 17.000 24.000 8.000
SOCIAL WORK 0.000 2.000 8.000 14.000 22.000 0.000

Note that only two groups are shown. This is because of the SELECT statement:

select cohort <> "ACADEMIC"
we issued earlier. Examine the summary statistics carefully and make sure that you can identify the number of
observations, minimum, maximum, mean, standard deviation, median, and mode for each of the two groups. Another
way of looking at the same data is to display it as line chart. Issue the command:

line ghg cohort
and examine the resulting graph. You might like to group the GHQ variable to make the graph easier to read.
The ‘/n’ at the end of the means command:

means ghqg cohort /n

instructs ANALYSIS not to display a table of GHQ by COHORT before displaying the summary statistics for each
group. This table is often of little use.
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Differences in means

Analysis of variance
With analysis of variance the variability of the data is split into two components:
1. Variability of the data within each group around the group mean
2. Variability of the means between groups
If the GHQ-28 score doesn't vary much between individuals within the same professional group (e.g. PGCE students

yield similar scores to each other and SOCIAL WORK trainees yield similar scores to each other) but the group means
differ a great deal, there is evidence that the population means are not equal:

Similar within group Similar within group
variabilty, differing between variability, similar between
groups means groups means

] 2 ]
S S

= 5
o o J
9] 9]

value value

The variability within each group is called the within-groups sum of squares and is calculated as:

SSW=3 (N,=DS,

where §; is the variance of group 7 about its mean, N; is the number of cases in group i, and 4 is the number of groups .
For us:

SSW = (33 - 1) * 38.614 + (50 - 1) * 42.660 = 3325.988

The variability of the group means is measured by the between-groups sum of squares and is calculated as:
k -
- 2
SSB = }E ]\]j(;X?j_-;X? )
i=1

where Xl, is the mean of group 7/ and X is the mean of the entire sample. For our data:

SSB = 33 * (11.636 - 9.711)2 + 50 * (8.440 - 9.711)% = 203.057

A test statistic is calculated as the ratio of the mean squares of these two numbers. The means squares are calculated by
dividing each sum of squares figure by its degrees of freedom. The between-groups degrees of freedom is k-1 where k is
the number of groups. The within-groups degrees of freedom is N - k where N is the number of cases in the entire
sample. The ratio of these mean squares is called the F statistic:

between groups means square _ 203.057

=4.945

within groups means square 41062

The p-value can be obtained by comparing the calculated F statistic against the F distribution (at k£ - / and N - k degrees
of freedom) in a set of statistical tables. Fortunately ANALYSIS calculates the F statistic and the associated p-value for
us.
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ANOVA - worked example

A worked example of ANOVA calculations

The table below shows twenty values of the GHQ for the PGCE cohort and eighteen values of GHQ for the SOCIAL
WORK cohort:

PGCE 5 6 8 8 9 10 10 11 12 13
14 15 17 18 18 20 20 21 22 24

SOCIAL WORK 2 2 2 4 4 4 5 6 7 7
8 9 10 13 13 14 14 20

The means and variances for this data are:

Group Mean Variance
BOTH 11.184 37.938
PGCE 14.050 32.366
SOCIAL WORK 8.000 26.000

The within groups sum of squares is:

SSW = (20 - 1) * 32.366 + (18 - 1) * 26.000 = 1056.954

The within group degrees of freedom is:

20 + 18 - 2 = 36

The within group means square is:

1056.954 / 36 = 29.360

The between groups sum of squares is:

SSB = 20 * (14.050 - 11.184)2 + 18 * (8.000 -11.184)% = 347.761
The between group degrees of freedom is:

2 -1=1
The between groups mean square is:

347.761 / 1 = 347.761

The ratio of the between groups mean square and the within groups mean square is the F statistic:

F = 347.761 / 29.360 = 11.811

The observed significance value or p-value can be obtained by comparing the calculated F statistic against an F’
distribution (at k - / and N - k degrees of freedom) in a set of statistical tables - in this example p < 0.005.
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ANOVA in ANALYSIS

An example of ANALYSIS output

The command:

means ghq cohort /n

produces the following summary statistics and ANOVA table:

COHORT Obs Total Mean Variance Std Dev

PGCE 33 384 11.636 38.614 6.214

SOCIAL WORK 50 422 8.440 42.660 6.531

Difference 3.196

COHORT Minimum 25%ile Median 75%ile Maximum Mode
PGCE 0.000 8.000 10.000 17.000 24.000 8.000
SOCIAL WORK 0.000 2.000 8.000 14.000 22.000 0.000

ANOVA

(For normally distributed data only)
The p value is equivalent to that for the Student's T Test,
since there are only 2 samples.

Variation SS df MS F statistic p-value

Between 203.104 1 203.104 4.946 0.027183 <- F-Statistic / p-value
Within 3325.956 81 41.061

Total 3529.060 82

In this case the p-value is less that 0.05 which is evidence that the observed difference in the means of the two groups is
unlikely to have arisen by chance. This is the same as saying that the PGCE students yielded significantly higher GHQ-
28 scores than the SOCIAL WORK Students.

Issue the command:

means ghqg cohort /n

and examine the output carefully making sure you can identify the F-statistic and its associated p-value.

What you should quote in reports

If you are using ANOVA techniques to analyse your data you should quote the means for each group together with the
F-statistic, degrees of freedom, and p-value. A typical quote might be:

'The PGCE group had a higher mean GHQ-28 score than the social work trainee group (PGCE mean =
11.636, Social Work mean = 8.440, F = 4.946, df = 1, p < 0.05)'
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Practical exercise

Variables and variable names

For a full explanation of variables, their names, and their codes refer to the table on page 10 or on the inside back cover
of this book.

Exercise 7 - Analysis of variance (ANOVA)

Use the MEANS command to test the null hypothesis that the means of the GHQ, ROSENBERG, MEE, MDP,
and MPA variables for PGCE and SOCIAL WORK Students are the same.
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Problems with ANOVA

What ANOVA assumes about your data

ANOVA is a fairly robust statistical test. This means that the test can be applied to a wide range of data without it
reporting misleading values. ANOVA does, however, make several assumptions about data. These are:

1. The groups are independent of each other. This means that the groups should be mutually exclusive. In our
data this means that we should not include the same individual in the PGCE group and the SOCIAL WORK
group. You should not use ANOVA techniques with repeated measurements from the same subjects.

2. The variable being studied should be (more-or-less) normally distributed. A normal distribution is a
symmetrical bell-shaped distribution where the mean, median, and mode are similar to each other:

mean, median, mode

standard deviation

Count
1

3. The variable being studied should have similar variances (or standard deviations) for each group.

If any of these assumptions are violated then the ANOVA technique may produce unreliable results. You should always
test these assumptions before placing any trust in the results of any ANOVA based analysis.
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Testing the ANOVA assumptions

Examining the output

The following output was produced using the command MEANS GHQ COHORT:

MEANS of GHQ for each category of COHORT

COHORT Obs Total Mean Variance Std Dev

PGCE 33 384 11.636 38.614 6.214

SOCIAL WORK 50 422 8.440 42.660 6.531

Difference 3.196

COHORT Minimum 25%ile Median 75%1ile Maximum Mode
PGCE 0.000 8.000 10.000 17.000 24.000 8.000
SOCIAL WORK 0.000 2.000 8.000 14.000 22.000 0.000

We can examine the assumption of normality by comparing the mean, mode and median within each group. If the data is
normally distributed we would expect the mean, median, and mode to take similar values. In our data this is not true for
the SOCIAL WORK group. The assumption that the variances are equal can be tested by comparing the values in the
variance column of the two groups. In our data the variances are quite similar. There is a formal statistical test that tests
the hypothesis that the variances are equal. This is Bartlett's Test and is displayed below the ANOVA table by
ANALYSIS:

Bartlett's test for homogeneity of variance
Bartlett's chi square = 0.094 deg freedom = 1 p-value = 0.758942

The variances are homogeneous with 95% confidence.
If samples are also normally distributed, ANOVA results can be used.

Bartlett's test confirms that the variances are similar enough for us to use the ANOVA technique.

You can also test the assumption of normality by examining a HISTOGRAM or LINE chart of the distribution of the
variable under study. Here the GHQ variable has been grouped to better show the underlying distribution:

20

12

1s

14

1z

10

Count

PGCE
* SOCIAL WORK

u] 5 10 15 20
GHUGROUP

This also shows that the GHQ data in the both groups is not normally distributed. This means that it may not be valid to
use the ANOVA technique to analyse our data.
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Practical exercise

Variables and variable names

For a full explanation of variables, their names, and their codes refer to the table on page 10 or on the inside back cover
of this book.

Exercise 8 - Testing the ANOVA assumptions

Use the MEANS command to test the ANOVA assumptions for ROSENBERG, MEE, MDP, and MPA
grouped for PGCE and SOCIAL WORK Students. Test the ANOVA assumption using the comparison of
means, medians, modes, and standard deviations and with LINE charts or HISTOGRAMSs. You may need to
group these variables before producing LINE charts and HISTOGRAMs.
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When ANOVA is unsuitable

It's a common problem

The assumption of normality is frequently violated. This is often a problem with data which are based on scores or
counts. This data tends to be distributed so that most individuals have low scores, counts, or values and a few
individuals have high scores, counts, or values. This type of distribution is often part of the design of an instrument such
as GHQ-28. Such distributions are called skewed distributions. A distribution with many individuals with low values is
called a positively skewed or skewed to the right distribution:

majority of cases to left

tail to right

Count
1

Value

and is typical of data collected using instruments such as GHQ-28 and biological measures such as triceps skin fold. A
distribution with many individuals with high values is called a negatively skewed or skewed to the left distribution:

- | majority of cases to right

tail to left

Count
1

Value

and is typical of biological measures such as gestation period. Both of these distribution types are common. With these
types of distribution, the mean and standard deviation do net describe the population well and statistical techniques that
rely on them (such as ANOVA) are not reliable.
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What can be done?

Transforming the data

If the data do not fit the ANOVA assumptions we could attempt to change the data to make it more suitable. Changing
the data in this way is called transforming the data and it is achieved by applying a simple mathematical formula to each
data point. The table below shows the most useful transformations that can be applied to data that do not fit the ANOVA
assumptions:

Problem Severity / Nature Transformation | Formula

Positively skewed | severe reciprocal -1/x
moderate logarithmic log(x)
slight square root \/;

Negatively skewed | severe cubic x3
moderate square x?

Unequal variances | proportional to mean logarithmic log(x)
proportional to the square of the mean reciprocal -1/x
proportional to the square root of the mean square root \/;

For example, with a moderate positive (right) skew:

v

v

v

v

v

\

Count
1

,‘!'//

\ A

v

v

T T T T T T T —
Value

a transformation of the variable (such as a logarithmic transformation) will move the higher data values less than the
lower data values bringing the distribution closer to the normal distribution.

The most commonly used transformation is the logarithmic transformation. Always try this transformation first as it will
solve the majority of problems associated with non-normal data.

When applying transformations you should note that you cannot take logarithms of negative numbers or zero, you

cannot take a square root of a negative number, and you cannot take the reciprocal of zero. If your data contains
negative or zero values then you may need to add a constant to each observation before transforming the data.
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Checking the data

Checking the data for skew and unequal variance

Issue the command:

means mdp cohort /n

and examine the output carefully. The mean, median, and mode for each group are quite different from each other:

COHORT Obs Total Mean Variance Std Dev

PGCE 33 155 4.697 11.468 3.386

SOCIAL WORK 50 349 6.980 32.224 5.677

Difference -2.283

COHORT Minimum 25%ile Median 75%ile Maximum Mode
PGCE 0.000 2.000 4.000 7.000 13.000 2.000
SOCIAL WORK 0.000 3.000 5.000 10.000 28.000 4.000

The standard deviations in the two groups are also very different from each other. This is confirmed by Bartlett's test:

Bartlett's test for homogeneity of variance
Bartlett's chi square = 9.155 deg freedom = 1 p-value = 0.002480

Bartlett's Test shows the variances in the samples to differ.
Use non-parametric results below rather than ANOVA.

Produce a HISTOGRAM of the distribution of the MDP variable:

histogram mdp
You can see that this variable has a positively skewed distribution.

Produce a LINE plot of the MDP variable for each value of the COHORT variable:

line mdp cohort

You can see that the SOCTAL WORK group has a wider range of values than the PGCE group and that both
distributions are positively skewed.

Despite the problems of skew and unequal variance with this data, it may still be possible to use ANOVA techniques
after applying a logarithmic transformation.
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Transforming the data

Applying a logarithmic transformation
Create a new variable called LOGMDP to hold the logarithm of the MDP variable:
define logmdp #.####
and assign a value to this variable:
logmdp = log(mdp + 1)
The variable LOGMDP now contains the logarithm of the MDP variable. We need to add 1 to MDP so that we do not

try to take the logarithm of zero (a non-existent number). We would need to do the same if we were to use a reciprocal
transformation as one divided by zero is an infinitely large number. Examine the distribution of the LOGMDP variable:

histogram logmdp
line logmdp cohort

The distribution is now more normal. Issue the command:

means logmdp cohort /n

and examine the output carefully. The mean, median, and mode for each group are now more similar:

COHORT Obs Total Mean Variance Std Dev

PGCE 33 22 0.669 0.088 0.297

SOCIAL WORK 50 40 0.794 0.106 0.326

Difference -0.125

COHORT Minimum 25%ile Median 75%1ile Maximum Mode
PGCE 0.000 0.477 0.699 0.903 1.146 0.477
SOCIAL WORK 0.000 0.602 0.778 1.041 1.462 0.699

The standard deviations in the two groups are also similar. This is confirmed by Bartlett's test:

Bartlett's test for homogeneity of variance
Bartlett's chi square = 0.321 deg freedom = 1 p-value = 0.571246

The variances are homogeneous with 95% confidence.
If samples are also normally distributed, ANOVA results can be used.

Despite the original problems of skew and unequal variance with this data, ANOVA techniques may still be used after
applying a logarithmic transformation.
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ANOVA and transformed data

What is the antilogarithm of the mean of the logarithms?

Now that we have transformed the data to meet the assumptions of the ANOVA technique we can use this new
transformed data to test our hypothesis. Issue the command:

means logmdp cohort /n

which produces the following output:

MEANS of LOGMDP for each category of COHORT

COHORT Obs Total Mean Variance Std Dev

PGCE 33 22 0.669 0.088 0.297

SOCIAL WORK 50 40 0.794 0.106 0.326

Difference -0.125

COHORT Minimum 25%ile Median 75%ile Maximum Mode
PGCE 0.000 0.477 0.699 0.903 1.146 0.477
SOCIAL WORK 0.000 0.602 0.778 1.041 1.462 0.699

ANOVA

(For normally distributed data only)
The p value is equivalent to that for the Student's T Test,
since there are only 2 samples.

Variation SS df MS F statistic p-value
Between 0.309 1 0.309 3.119 0.077453
Within 8.012 81 0.099

Total 8.320 82

We are working with the logarithmically transformed data. The summary measures are for this data. To get back to
sensible values we need to use a calculator (or a set of ‘log’ tables) to calculate the antilogarithms of the quoted values.
For the PGCE group the ‘average’ MDP score is 100-669 = 4,667 and for the SOCIAL WORK group it is 100-794 =
6.223. These values are different from the arithmetic mean of the untransformed data. They are known as geometric
means. If you transform your data in this way make sure that you explicitly state that you are using geometric means in
reports and papers.

What you should quote in reports
If you are using ANOVA techniques to analyse your data and have applied a logarithmic transformation to your data you
should quote the geometric means for each group together with the F-statistic, degrees of freedom, and p-value. A

typical quote might be:

'The social work trainees and PGCE students had similar geometric mean MDP scores (Social Work = 6.223,
PGCE =4.667, F=3.119,df =1, p = 0.077453)'
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Can't transform! Won't transform!

Difficult distributions

Sometime when you try to transform your data it just won't approach normality. This is often the case with distributions
such as uniform distributions:

4 uniform
distribution of
values

Count
1

Value

which are common in disease surveillance (i.e. a disease with no seasonal variation), multimodal distributions:

4 multiple

] V modes

Count
1

Value

which are common biological distributions or when two groups are being (inappropriately) analysed together (e.g.
hormone levels in mixed sex groups), or J-Shaped (very heavily skewed) distributions:

majority of cases

Count
1

very long tail

Value

which are typical of survival times (e.g. AIDS diagnosis progressing to death) or counts (e.g. of parasites). A right skew
is shown here but J-shaped distributions may also be skewed to the left. These extreme degrees of skew may be difficult
to correct using transformations.

ANOVA techniques do not produce reliable results with these sorts of distribution because the parameters used in its
calculation (means and variances) do not accurately reflect the distribution of the data.
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Another problem with ANOVA

ANOVA and small datasets or small group sizes

All statistical tests require an adequate sample size if results are to be generalised from sample to population. ANOVA
techniques require an adequate sample size in each strata. This means that there must be a sufficient number of cases in
both the PGCE and SOCIAL WORK groups. A sufficient number is usually taken to mean more than twenty (20) cases
in this context but this really depends on the magnitude of difference that it is important to be able to detect. This is the
final assumption that needs to be met if ANOVA results are to be trusted. Data that do not meet this assumption are
called sparse data.

Non-parametric statistics

Non-parametric statistics are a set of statistical methods that make fewer assumptions about the distribution of data.
They are called non-parametric because they do not assume that data can be described by a small number of parameters
such as the mean and standard deviation which completely describes the normal distribution. They may also be used
reliably with small sample / group sizes.

There are problems with using non-parametric techniques. Often, no parameters (e.g. mean and standard deviation) are

estimated so it can be difficult to estimate the strength and direction of an effect or calculate confidence intervals. There
are no reliable methods for calculating sample sizes for use with non-parametric statistics. Non-parametric statistics are
also conservative. This means that they may falsely attribute small (but real) differences in the data to random variation.

Parametric techniques (such as ANOVA) are preferred to non-parametric techniques when the data meets the required
assumptions.

Non-parametric statistics In ANALYSIS

ANALYSIS performs two non-parametric tests as part of the MEANS command. These are the Wilcoxon Rank-Sum
Test (a.k.a. Mann-Whitney U-Test) and the Krustall-Wallis Test. Which test is performed depends on the number of
groups being analysed. The Wilcoxon Rank-Sum Test is performed for two groups and the Kruskal-Wallis Test if there
are more than two groups. Both test the hypothesis that the sample medians are equal.
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Differences in medians

A worked example of the Wilcoxon Rank-Sum Test

This section presents a worked example of how the Wilcoxon Rank-Sum Test is calculated. As demonstration data we
will use GHQ scores from five SOCIAL WORK cases and six PGCE cases. These data are shown below:

Cohort GHQ Cohort GHQ
SOCIAL WORK 2 PGCE 24
SOCIAL WORK 17 PGCE 9
SOCIAL WORK 21 PGCE 18
SOCIAL WORK 13 PGCE 13
SOCIAL WORK 22 PGCE 6

PGCE 1

The data from both groups is combined, sorted, and given a rank (1 for the lowest value, 2 for the next lowest, and so
on). It there are any ties (more than one value the same) the average rank is assigned to each observation:

Social Work Ranks PGCE
1.0 1
2 2.0
3.0 6
4.0 9
13 5.5 5.5 13
17 7.0
8.0 18
21 9.0
22 10.0
11.0 24
33.5

The ranks of the observations in the group with the smallest sample size are summed to produce a statistic called the U-
Statistic or the sum of the ranks:

v =2+5.5+ 7+ 9+ 10 = 33.5

On the basis of the null hypothesis that the distributions of ranks in both groups are the same, the distribution of the U
statistic can be calculated and a p-value for the test can be derived from statistical tables. Fortunately ANALYSIS
performs all of these calculations for us.

Note that with groups that have an even number of cases the median is calculated as the mean of the middle pair of
cases. In this example, the median GHQ score for the PGCE group is:

(9 +13) / 2 =11
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Non-parametric tests in ANALYSIS

An example of ANALYSIS output

The following table was produced using the command MEANS GHQ COHORT /N. Important information has been
highlighted:

COHORT Obs Total Mean Variance Std Dev

PGCE 33 384 11.636 38.614 6.214

SOCIAL WORK 50 422 8.440 42.660 6.531

Difference 3.196

COHORT Minimum 25%ile Median 75%ile Maximum Mode
PGCE 0.000 8.000 10.000 17.000 24.000 8.000
SOCIAL WORK 0.000 2.000 8.000 14.000 22.000 0.000

ANOVA

(For normally distributed data only)
The p value is equivalent to that for the Student's T Test,
since there are only 2 samples.

Variation SS df MS F statistic p-value
Between 203.104 1 203.104 4.946 0.027183
Within 3325.956 81 41.061

Total 3529.060 82

Bartlett's test for homogeneity of variance
Bartlett's chi square = 0.094 deg freedom = 1 p-value = 0.758942

The variances are homogeneous with 95% confidence.
If samples are also normally distributed, ANOVA results can be used.
Mann-Whitney or Wilcoxon Two-Sample Test (Kruskal-Wallis test for two groups)
4.882 <- Test Statistic

1
0.027140 <- p-value

Kruskal-Wallis H (equivalent to Chi square)
Degrees of freedom
p value

What you should quote in reports

If you are using non-parametric techniques such as the Wilcoxon Rank-Sum test to analyse your data you should quote
the median for each group together with the name of the test used, the test statistic (e.g. U or Kruskal-Wallis H), the
degrees of freedom, and p-value. A typical quote might be:

'The PGCE group had higher GHQ-28 scores than the social work trainee group (Kruskal-Wallis H, PGCE
median = 10.000, Social Work median = 8.000, chi-square = 4.882, df = 1, p < 0.05)'

Non-parametric tests and group size

Non-parametric techniques are better at dealing with sparse data than parametric techniques such as ANOVA. The non-
parametric tests presented here will work reliably with group sizes of five or more.
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Practical exercise

Variables and variable names

For a full explanation of variables, their names, and their codes refer to the table on page 10 or on the inside back cover
of this book.

Exercise 9 - Doing it!
The two hypotheses behind the Stress and the Student Social Worker Studywere:
1. Students undertaking professional training exhibit higher stress levels than undergraduate students.

2. Students undertaking professional training in social work exhibit higher stress levels than those
undertaking postgraduate teacher training.

Use the techniques and commands presented thus far to test these hypotheses.
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Two continuous variables

Working with different variable types

We have used techniques to analyse data of two different types:

Type Description
Categorical data Cases belong to a defined category or group such as MARITAL
status, SEX, and LIVING situation. A particularly common type of
categorical variable is a binary categorical variable where cases can
belong to one of two alternative groups. The variables GHQCASE,
which we created earlier, and SEX are examples of binary
categorical variables in the Stress and the Student Social Worker
dataset.
Count or continuous data | Unmodified numerical measures. There are two types of continuous
data. Discrete continuous data is limited to whole numbers or
integers. A count of cases over time would be a discrete variable.
Discrete variables in the Stress and the Student Social worker
dataset are GHQ, ROSENBERG, MEE, MDP, and MPA. True
continuous data is measured on a continuous scale. Examples are
height, weight, and blood pressure.

The statistical technique we use to analyse the data depends upon the types of data that we need to analyse:

1° Variable | 2™ variable Technique

Categorical Categorical | Relative risks and confidence intervals (two-by-two tables)
Odds ratios and confidence intervals (two-by-two tables)
Chi-square statistic and p-values (contingency tables)
Fisher's Exact Test (two-by-two tables)

Continuous Categorical | ANOVA (normally distributed data only)

Wilcoxon rank-sum test (non-normal or sparse data)
Kruskal-Wallis test (non-normal or sparse data)

As you would expect, there are statistical techniques for analysing data that is stored as two continuous variables. These
techniques are known as correlation and regression.

Why use correlation and regression analysis?

Instead of worrying about new techniques we could stick to what we already know. When faced with the need to
analyse two continuous variables we could recode one or both of the variables into groups and perform a contingency
table analysis or use ANOVA (or non-parametric equivalent) techniques. The problems with this approach are:

1. When we recode data we are losing a lot of information. Recoded data often hides the variability of the
data and can lead us into making unwarranted assertions about our data.

2. The choice of cut-points for group membership is often arbitrary. The choice of cut-point can make a
difference to the results of any analysis. Variables such as GHQ, where it is valid to choose a cut-point of
five, are rare - the GHQ-28 score was developed over a long period to ensure that this cut-point was not
arbitrary.

To avoid these problems it is best to use techniques that can cope with the raw continuous data.
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Examining associations

Using scatter plots to examine associations

The chart below shows a scatter plot of the emotional exhaustion (MEE) variable and the GHQ-28 score (GHQ) variable
for each case:
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There appears to be an association between emotional exhaustion (MEE) and the GHQ-28 score. It is a positive
association because as MEE increases so does GHQ. The relationship is also called linear because the observed points
cluster (more or less) around a straight line:
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A scatter plot is the first step in studying the association between two continuous variables.
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The strength of an association

Assessing the strength of an association

The strength of an association can be measured by calculating the Pearson correlation coefficient:

N

> (X, = X)X -7)
(N -1)S,5,

Vv =
where N is the number of cases and Sy and Sy are the standard deviations of the two variables. The absolute value of 7 is
an indication of the strength of the linear relationship.

The largest possible absolute value (the value regardless of sign) of 7 is one (1). This only occurs when all points fall
upon a straight line.

When the line has a positive slope (i.e. y increases as x increases) the value of  is positive and when the line has a
negative slope (i.e. y decreases as x increases) the value of  is negative:

positive r negative r

O A : A y decreases as x increases

Ko { o
N o N "0

| O \ y increases as x increases ] :

X X

A value of zero (0) indicates no linear association.
Note that the calculation of 7 uses means and standard deviations and therefore requires that the distribution of both

variables are approximately normal. You may need to transform one or both variables to meet this assumption (see
pages 78 - 79).
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Non-linear associations

The correlation coefficient and non-linear associations

You should note that Pearson correlation coefficient measures the strength of a /inear association. It is possible to have a
very strong association between two variables but a very small correlation coefficient. The chart below shows such a
relationship:

strong non-linear association

which yields a small Pearson correlation coefficient (r = 0.2). In this case it is not appropriate to measure the strength of
association using the Pearson correlation coefficient - other techniques (which are not covered in this book) must be
used. The Pearson correlation coefficient must only be used to assess the strength of a /inear (as in straight line)
association.

Because the correlation coefficient only tests the strength of a linear association, it is important to examine the nature of
the association using scatter plots before calculating the correlation coefficient. If a strong association is observed but it
is non-linear (i.e. cannot be well summarised using a straight line) then it may be possible to transform one or both of the
variables to arrive at a more linear (straight line) association.

The calculation of the Pearson correlation coefficient is complicated and best left to purpose designed computer
programs such as ANALYSIS.
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Transformation and non-linear associations

Why transform data?

Transformation can also be useful when using correlation and regression analysis. You would apply a transformation to
one or both variables in order to:

1. Make a skewed distribution more symmetrical (i.e. make a skewed variable more normal).
2. Make the variances (standard deviations) similar.
3. Make an association more linear.

The first two applications have already been covered (see pages 64 - 69). All applications are important but, with
correlation and regression analysis, the goal of making an association more linear is the most important.

How transformation can straighten an association

You can usually make an association more linear by applying a transformation to one of the variables. In this situation:

: 33

a transformation of the y-variable (such as a logarithmic or square-root transformation) will move the higher y data
values more than the lower y data values bringing the y data values closer to a straight line. A similar effect might be
obtained by applying a transformation to the x-variable. In this situation:

X

1 o— >

O

X

a transformation of the x-variable (such as squaring the x-variable) will move the higher x data values more than the
lower x data values bringing the x data values closer to a straight line.

76



Which variable? Which Transformation?

Which variable should be transformed?

It is not particularly important which variable you choose to transform. Your choice should be guided by the three goals
of transformation:

1. Make a skewed distribution more symmetrical (i.e. make a skewed variable more normal).

2. Make the variances (standard deviations) similar.

3. Make an association more linear.
Sometimes you will need to transform only one variable (either x or y) or both variables to achieve these goals. You will
need to experiment with different transformations of the two variables to achieve these goals. You should bear in mind
that the third aim (to make an association more linear) can only be performed on associations where one variable

increases (or decreases) as the other variable increases. In situations where a variable first decreases (or increases) and
then increases (or decreases), it will not be possible to make the association linear.

Guidelines for transformation

There are four types of non-linear associations that respond well to transformation. These are:

Association Type Transform X Only Transform Y Only
N s
log(x) log(y)
-1/x -1/y

~1/Jx

—1/4y

2

2

X Y
X ’
Y
x Jy
X log(y)
-1/y

—1/4y

Jx
log(x)
-1/x

—1/+/x
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The sample transformations may not apply if both the x-variable and the y-variable are to be transformed.




Scatter plots and correlation coefficients

Producing scatter plots and correlation coefficients in ANALYSIS
Start ANALYSIS again and instruct ANALYSIS to read the SSSW dataset by typing:
read sssw.rec
Examine the relationship between the GHQ and MEE variables with the command:
scatter mee ghg
You can instruct ANALYSIS to draw the best-fit straight line by specifying the ‘/r” option to the SCATTER command:
scatter mee ghqg /r
You can instruct ANALYSIS to calculate the Pearson correlation coefficient with the command:
regress ghg = mee
ANALYSIS displays the Pearson correlation coefficient and 95% confidence limits:

Correlation coefficient: .58 <- correlation coefficient
3

r 0.5
r" 0.3
0. < R

|

2
95% confidence limits: 4 <0.71 <- confidence limits
The interpretation of the confidence limits is similar to using confidence limits for relative risks and odds ratios.

Remember that » must lie between -1 and +1 and that a value of » = 0 indicates no linear association.

You may also have noticed that ANALYSIS calculated another measure called 72 (r-squared). This is the square of
the correlation coefficient and is called the coefficient of determination: This is a measure of how well the data
corresponds to the best-fit straight line:

Correlation coefficient: 0.58
0.33 <- coefficient of determination
95% confidence limits: < R

It is sometimes interpreted as how much of the variability in the y-variable (e.g. GHQ) can be ‘explained’ by the
variability in the x-variable (e.g. MEE) and is expressed as a proportion (e.g. 12 = 0.33 or 33%)).

Note that the order of the variables for the SCATTER and REGRESS commands are reversed. The SCATTER
command uses the form:

scatter x-yariable y-variable

and the REGRESS command uses the form:

regress y-variable = x-variable

In correlation and regression analysis the y-variable is called the response or dependant variable (this is analogous to
the outcome variable in two-by-two table analysis) and the x-variable is called the explanatory or independent variable
(this is analogous to the exposure variable in two-by-two table analysis). Before using these techniques you should be
clear which variable is dependant and which is independent. The choice does not effect the correlation coefficient but
does effect other regression statistics. In practice, it may be difficult to decide which is which. In this example, we are
assuming that the GHQ-28 score is dependent upon (explained by) the level of emotional exhaustion.
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Interpreting the correlation coefficient

What different values of the correlation coefficient mean

Interpretation of the correlation coefficient is not straightforward. Strengths of linear association vary depending on the
field of study. What is considered a strong association in one field may be considered weak in another. The only really
useful guide to interpreting the correlation coefficient is a thorough literature review of the field of study.

In general terms, a correlation coefficient that is close to zero indicates no linear association and a correlation coefficient
that is close to one (or minus one) indicates a linear association. The table below shows general guideline values for
assessing the strength of a linear association but it must be stressed that the correct interpretation depends upon the field
of study:

Range of correlation coefficient Interpretion
-1.0 to -0.8 strong negative linear association
-0.8 to -0.5 moderate negative linear association
-0.5 to -0.3 weak negative linear association
-0.3 to +0.3 no linear association
+0.3 to +0.5 weak positive linear association
+0.5 to +0.8 moderate positive linear association
+0.8 to +1.0 strong positive linear association

If you examine the correlation coefficient (and its confidence limits) for the association between the GHQ and MEE
variables:

Correlation coefficient: .58 <- correlation coefficient
3

r 0.5
r” 0.3
0. <R

o

2
95% confidence limits: 4 <0.71 <- confidence limits
and compare them with the guideline values in the table, you should see that there is a weak to moderate positive linear

association between the two variables.
The interpretation of the confidence limits for the correlation coefficient is similar to that used with the relative risk or

odds ratio except that zero is the null value. A confidence interval that includes zero indicates that the observed
association may be due to random variation.
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The regression line

Summarising associations with straight lines
If there is a linear association between two variables you can use a straight line to summarise the data (in the same way
as you can use the mean and standard deviation to summarise a single normally distributed continuous variable). When

the correlation coefficient (») is +1 or -1 the line that best summarises the data is the line that passes through all
observations:

- o

4 /O//

O/ line passes through all points

but when the variables are less strongly correlated there are many possible lines that could be chosen to represent the
data:

- o ~ O
0.0
o

O
> O O ce CL
1 O X O
1 o O&"QN S
L R O Which line best summarises the data?

| 0

The most common method of fitting a line to data is the methods of least squares. This methods results in a line that
minimises the sum of the squared vertical distances from the data point to the line.
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The regression line

The method of least squares
Any straight line drawn on a chart can be represented by the equation:
y = a + fpx

where y is the response (or dependant) variable and x is the explanatory (or independent variable). The equation tells us
how these two variables are related. The term « is the intercept, the point at which the line cuts the y-axis (i.e. the value
of y when x = 0). The term S is the slope of the line, the increase (or decrease) in y per unit increase in x:

y = o + Bx

We could draw a line by eye using a transparent ruler but this would be prone to error. A better approach is to use the
method of /east squares. Using this method we can calculate values for o and £ that minimise the vertical distances
between the data points and the line. The method is known as least squares because it minimises the sum of the squares

of the vertical distances:

o and B for line selected to minimize
the sum of the distances of points
- from the regression line.

O—»

The method of least squares is available in most computer packages (including ANALYSIS) and is often called linear
regression or ordinary least squares (OLS) regression. The line found by this method is called the regression line. The
regression line estimates the mean value of y for any given value of x. The line always passes through the point defined
by the mean value of x and the mean value of y. The slope, f, is usually referred to as the regression coefficient or the /-
coefficient.

Before using regression techniques you should be clear which variable is dependant () and which is independent (x).
The choice does not effect the correlation coefficient but does effect the intercept and regression coefficient.
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Linear regression

The REGRESS command in ANALYSIS
You can use the REGRESS command in ANALYSIS to perform linear regression:
regress ghqg = mee

ANALYSIS calculates and displays the Pearson correlation coefficient, 95% confidence limits for the Pearson
correlation coefficient, r-squared, the y-intercept («) and the regression coefficient (f):

Correlation coefficient: r = 0.58
r~2= 0.33
95% confidence limits: 0.41 < R< 0.71
Source df Sum of Squares Mean Square F-statistic
Regression 1 1177.6686 1177.6686 40.57
Residuals 81 2351.3917 29.0295
Total 82 3529.0602
B Coefficients
B 95% confidence Partial
Variable Mean coefficient Lower Upper Std Error F-test
MEE 24.9036 0.3762896 0.260495 0.492084 0.059079 40.5680
Y-Intercept 0.3398722

In this case the Y-Intercept (@) is equal to 0.3398722 and the slope (S-coefficient) is equal to 0.3762896. The equation
for the fitted line is:

GHQ = 0.3398722 + (0.3762896 * MEE)

For each unit increase in the MEE score the GHQ score increases by 0.3762896. The correlation coefficient (r) is equal
to 0.58 which suggests that MEE score is moderately predictive of GHQ score. The coefficient of determination is 0.33
suggesting that 33% of the variability in the GHQ variable can be explained by the variability in the MEE variable.

There is a formal statistical test that can be used with linear regression. This is the same F Statistic that is used with
ANOVA techniques. ANALYSIS calculates the F statistic but does not calculate the associated p-value. The F statistic
for this regression is equal to 40.57 which, when compared to the F distribution (at df; = 1 and df, = 82) in a set of
statistical tables (see page 92), is highly significant (p < 0.001) suggesting that GHQ and MEE are associated with each
other and that MEE is predictive of GHQ.

It is possible to specify more than one independent variable with linear regression. This procedure is called multiple
linear regression and is beyond the scope of this book.

What You Should Quote in Reports

If you are using linear regression techniques to analyse your data you should quote 7, the F-statistic, degrees of freedom,
and p-value:

'We found MEE score to be moderately predictive of GHQ-28 score (r = 0.58, F = 40.57, df=81, p < 0.001)'
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What the regression line does not explain

Predicted values

The equation for the association between the MEE score and the GHQ score is:
GHQ = 0.3398722 + (0.3762896 * MEE)

Using this equation we can make a prediction of a subject's GHQ score given their MEE score. For example, we can
predict the GHQ score for subjects with an MEE score of 25 using the equation:

GHQ = 0.3398722 + (0.3762896 * MEE)
GHQ = 0.3398722 + (0.3762896 * 25)
GHQ = 9.7471122

Which we round up to the whole number value 10 (it is impossible to have a fractional score). Examine the GHQ score
for those cases with a MEE score of 25 using the following commands:

select mee = 25
freq ghg

Note that no cases have a GHQ score of 10. This may due to random variation (which is always present). It may also be
because MEE score is only a moderately good predictor of GHQ score or because the relationship between GHQ and
MEE is not best summarised by a straight line.

Note also that the mean GHQ score is the same as our predicted GHQ score:

GHQ H Freq Percent Cum
______ +_______________________
0 | 1 25.0% 25.0%
8 ' 1 25.0% 50.0%
14 | 1 25.0% 75.0%
18 ' 1 25.0% 100.0%
______ o
Total | 4 100.0%
Sum = 40.00
Mean = 10.00 <- Mean GHQ for MEE = 25
Standard deviation = 7.83

This is exactly what we would expect as the method of least squares causes the regression line to estimate the mean
value of y for any given value of x.
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What the regression line does not explain

Residual values

The difference between the values predicted by the regression line and the actual data are called the residuals. It is
important that you examine the residuals as it will help you decide how well the linear (straight line) model fits the data
and whether you need to apply a transformation to one or both of the variables.

Issue the following commands:

define resid ##.####
resid = ghg - (0.3398722 + (0.3762896 * mee))

to calculate the residuals. If we plot the residuals against the original x-variable (MEE):

scatter mee resid

we should see a random plot. This would indicate that there is a relatively straightforward association between MEE
score and GHQ score and that the straight line summarises much of the structure in the data with the difference between
the actual and predicted values being due to random variation.

There should be no structure in a plot of the residuals against the original x-variable. The residual plot should be a
random cloud of points. If the residual plot shows some structure (other than randomness) this indicates that the straight
line does not summarise the data well and that you may need to apply a transformation to one or both of the variables to
make the association more linear.

84



Practical exercise

Variables and variable names

For a full explanation of variables, their names, and their codes refer to the table on page 10 or on the inside back cover
of this book.

Exercise 10 - Correlation and regression

Use the SCATTER command to investigate the association between the various continuous variables in the
dataset.

Use the REGRESS command to asses the strength of any associations you find.

Calculate and plot residual values for each of the associations you find.
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Solutions to practical exercises

Exercise 1 - Examining a dataset

There are 152 cases in the SSSW.REC dataset. The number of cases in a dataset is shown on the first line of the status
information at the top of the ANALYSIS screen:

Dataset: A:\SSSW.REC (152 records) Free memory: 250K
Criteria: All records selected

The command to SELECT only those people who are LIVING alone is:

select living = 1

Counting the records shown by a BROWSE or LIST command shows that 17 records are selected comprising of 8
records in the ACADEMIC group, 5 records in the PGCE group, and 4 records in the SOCIAL WORK group.

To SELECT only those persons who are not White Europeans you should first clear the SELECTion by issuing the
SELECT command without specifying a SELECTion criteria:

select
and then issuing the command:
select ethnic <> 10

Counting the records shown by a BROWSE or LIST command shows that 42 records are selected comprising of 18
records in the ACADEMIC group, 2 records in the PGCE group, and 22 records in the SOCIAL WORK group.

To SELECT only those persons who are both West-Indian and female you should first clear the SELECTion by issuing
the SELECT command without specifying a SELECTion criteria:

select

and then issuing the command:

select ethnic = 2 and sex = 2

Counting the records shown by a BROWSE or LIST command shows that 3 records are selected all of which are in the
SOCIAL WORK group.

To continue to work with all of the cases in the dataset you should issue the SELECT command without specifying a
SELECTion criteria:

select
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Solutions to practical exercises

Exercise 2 - Producing charts
Issue the command:

bar marital

to produce a BAR chart of MARITAL status. The most common marital status is 2 (single). The two groups 3
(Divorced) and 4 (Separated) have less than 10 persons.

Issue the command:

pie age
to produce a PIE chart of AGE. 50.7% of the study population was over 25 years old.
A HISTOGRAM is the most appropriate chart for the GHQ-28 (GHQ) score. The PIE chart is too difficult to read
because there are two many ‘slices’ and because the data is ordered (which is difficult to see with a PIE chart). The
LINE chart is useful and clear but because LINE charts are often used to show trends over time a LINE chart may be a
little confusing for others to read (especially if you include it in a report that also uses LINE charts to show time-series

data).

The command to produce a SCATTER plot of the GHQ-28 (GHQ) variable and the emotional exhaustion (MEE)
variable is:

scatter ghg mee

You can specify a regression line be adding ‘/r’ to the SCATTER command:

scatter ghqg mee /r
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Solutions to practical exercises

Exercise 3 - Summarising distributions

The command to examine the distribution of the distribution of the ROSENBERG variable is:

freq rosenberg

which produces the following output:

ROSENBERG | Freq
—————————— +
10 | 10
11 H 4
12 H 12
13 | 11
14 | 5
15 | 6
16 | 4
17 | 9
18 | 13
19 | 8
20 ! 17
21 1 13
22 | 6
23 | 4
24 | 8
25 | 1
26 | 5
27 1 2
28 | 2
29 i 3
30 | 3
31 1 2
32 1 1
33 | 2
—————————— +

Total | 151
Sum
Mean

Standard deviation

Percent Cum.
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48 cases had a ROSENBERG score of less than or equal to 15 (i.e. 10 +4 + 12 + 11 + 5 + 6 = 48). This represents

31.8% of the study population.

The most common ROSENBERG score is 20 with 17 cases (11.3% of the study population).

Only 5 cases had a ROSENBERG score greater than 30 (2 + 1 + 2 = 5). This represents 3.3% of the study population

(100.0% - 96.7% = 3.3%).

Note that only 151 cases are shown in the frequency table. This is because there is one cases with a missing

ROSENBERG score.
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Solutions to practical exercises

Exercise 3 - Summarising distributions
The command to examine the distribution of the ETHNIC variable is:
freq ethnic

which produces the following output:

ETHNIC | Freqg Percent Cum
_______ e~
1 ! 1 0.7% 0.7%
2 ! 6 3.9% 4.6%
3 H 9 5.9% 10.5% <- Indian
4 ! 2 1.3% 11.8%
5 ' 3 2.0% 13.8% <- Bangladeshi
6 ' 1 0.7% 14.5%
7 ! 2 1.3% 15.8%
9 ! 1 0.7% 16.4%
10 ! 110 72.4% 88.8% <- White European
11 1 17 11.2% 100.0%
_______ o~
Total | 152 100.0%
Sum = 1379.00 <- Not valid
Mean = 9.07 <- Not wvalid

Standard deviation 2.54 <- Not valid

5.9% of the study population were Indian (coded as ETHNIC = 3).

2.0% of the study population were Bangladeshi (coded as ETHNIC = 5).

27.6% (100% - 72.4% = 27.6%) of the study population were not White European (coded as ETHNIC = 10).

It is not valid to use the sum, mean, and standard deviation to summarise the distribution of the ETHNIC variable
because it is a categorical variable and these summary measures can only be applied usefully to continuous variables.

You can see a visual representation of a frequency table using the BAR and PIE commands:

bar ethnic
pie ethnic

There are too many categories of the ETHNIC variable for a PIE chart to be used successfully.

89



Solutions to practical exercises

Exercise 4 - Summarising distributions

The commands to produce the seven figure summaries for the GHQ, ROSENBERG, MEE, MDP, and MPA variables
are:

means ghqg all /n
means rosenberg all /n
means mee all /n
means mdp all /n
means mpa all /n

Your completed table should look like this:

GHQ ROSENBERG MEE MDP MPA
number of cases 152 151 83 83 83
mode 0.000 20.000 29.000 4.000 34.000
median 7.000 19.000 25.000 5.000 34.000
mean 7.789 18.709 24.904 6.072 33.181
minimum 0.000 10.000 1.000 0.000 5.000
maximum 27.000 33.000 53.000 28.000 46.000
standard deviation 6.719 5.665 10.071 4.999 7.469

Visual representations of the distribution of these variables can be produced using the HISTOGRAM command:

histogram ghg
histogram rosenberg
histogram mee
histogram mdp
histogram mpa

The mode, median, mean, minimum, and maximum of the ROSENBERG variable are marked on this graph:

20

Count

ROSENBERG
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Solutions to practical exercises

Exercise 5 - Recoding variables and two-by-two tables
The first step in this exercise is to examine the distribution of the ROSENBERG variable:
means rosenberg all /n

which produces the following output:

Minimum 25%ile Median 75%ile Maximum Mode
10.000 14.000 19.000 22.000 33.000 20.000

And then use the upper quartile as a cut-point for a newly defined variable:

define rg <AAAAAAAAAA>
recode rosenberg to rg 10-21="LOW NORMAL" 22-hi="HIGH"

You should always check the result of any RECODE command using the BROWSE or LIST commands:
browse rosenberg rg

And then to use the TABLES command to investigate the association between PROFESSION and your new variable:
tables profession rg

which produces the following output:

RG
PROFESSION |HIGH LOW NORMAL | Total
___________ S
+ 14 69 | 83
- 25 43 | 68
___________ +_____________________+______
Total | 39 112 | 151
Single Table Analysis
Odds ratio 0.35
Cornfield 95% confidence limits for OR 0.15 < OR < 0.80
Relative risk of (RG=HIGH) for (PROFESSION=+) 0.46

Greenland, Robins 95% conf. limits for RR 0.26 < RR < 0.81
(Biometrics 1985;41:55-68)
Ignore relative risk if case control study.

Chi-Squares P-values
Uncorrected: 7.72 0.00544784 <---
Mantel-Haenszel: 7.67 0.00560444 <---
Yates corrected: 6.72 0.00952995 <---

Showing that those in the PROFESSIONal group are less likely to have high ROSENBERG scores (RR = 0.46, 95%
C.1. 0.26 - 0.81, Yates chi-square = 6.72. p < 0.01). You can also use the TABLES command to investigate the
association between AGE, SEX, MARITAL, and ETHNIC and your new variable:

tables age rg
tables sex rg
tables marital rg
tables ethnic rg

Showing that those in the under-25 age group are more likely to have high ROSENBERG scores (RR =3.02, 95% C.I.
=1.58 - 5.75, Yates chi-square = 12.19, p < 0.0005).
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Solutions to practical exercises

Exercise 6 - Recoding, subsets, and two-by-two tables

Use the MEANS command to find the quartiles of the distribution of the MEE and MDP variables (as was done in the
previous exercise):

means mee all /n
means mdp all /n

and then use the DEFINE and RECODE commands to create the variables holding the grouped data:

define meecase <AAAAAAAAAA>
recode mee to meecase 1-32="LOW NORMAL" 33-hi="HIGH"

define mdpcase <AAAAAAAAAA>
recode mdp to mdpcase 0-8="LOW NORMAL" 9-hi="HIGH"

and remember to use the BROWSE or LIST command to check the results of the RECODE commands:
browse mee meecase mdp mdpcase

Then use the TABLES command to investigate the association between COHORT and your new variables:

tables cohort meecase
tables cohort mdpcase

Showing that PGCE students were more likely to have high MEE scores than SOCIAL WORK students (RR = 2.46,
95% C.I. 1.15 - 5.28, Yates chi-squares = 4.59, p < 0.05). This does not support the researchers’ hypothesis.
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Solutions to practical exercises

Exercise 7 - Analysis of variance (ANOVA)

The commands needed to complete this exercise are:

means
means
means
means
means

ghg cohort /n
rosenberg cohort /n
mee cohort /n
mdp cohort /n
mpa cohort /n

The PGCE group had a higher mean GHQ-28 score than the social work trainee group (PGCE mean = 11.636, Social
Work mean = 8.440, F = 4.946, df = 1, P < 0.05).

The PGCE group had a higher mean MEE score than the social work trainee group (PGCE mean = 30.091, Social Work
mean = 21.480, F =17.447, df =1, P <0.005).

The PGCE group had a lower mean MDP score than the social work trainee group (PGCE mean = 4.697, Social Work

mean = 6.980, F =

4.313,df =1, P <0.05).

Note that these finding may not be valid as some of the ANOVA assumptions may be violated (see pages 61-62 and
Exercise 8 on page 63).
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Solutions to practical exercises

Exercise 8 - Testing the ANOVA assumptions

The commands needed to complete this exercise are:

means rosenberg cohort /n
means mee cohort /n
means mdp cohort /n
means mpa cohort /n

By comparison of means, median and modes the variables ROSENBERG, MEE, MDP, and MPA all meet the ANOVA
assumptions. Comparison of variances or standard deviations using Bartlett’s test shows that the MDP variable fails to
meet the ANOVA assumptions.

To examine the distributions of these variable they must first be grouped:

define rosenlook <AAAAAAAA>
recode rosenberg to rosenlook by 5

define meelook <AAAAAAAA>
recode mee to meelook by 5

define mdplook <AAAAAAAA>
recode mdp to mdplook by 5

define mpalook <AAAAAAAA>
recode mpa to mpalook by 5

before issuing the LINE commands to examine the underlying distributions:

line rosenlook cohort
line meelook cohort
line mdplook cohort
line mpalook cohort

Examination of these charts shows that the MEE and MPA variables are approximately normally distributed (MPA is

slightly skewed to the left) and that the ROSENBERG and MDP are severely non-normal. This means that it may not be
valid to use ANOVA techniques with the ROSENBERG and MDP variables.
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Solutions to practical exercises

Exercise 9 - Doing it!

You’re on your own for this exercise. The descriptive and analytical techniques and the ANALY SIS commands
necessary for this exercise (and the analysis of the data arising from the Stress and the Student Social Worker Study)

have all been introduced and rehearsed in the previous exercises. Good luck . . .
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Solutions to practical exercises

Exercise 10 - Correlation and regression

You will have to issue many SCATTER and REGRESS commands to investigate each possible pair of variables to
complete this exercise:

SCATTER commands
scatter ghg rosenberg /r

REGRESS commands
regress rosenberg ghg

scatter ghqg mee /r regress mee ghq

scatter ghqg mdp /r regress mdp ghg

scatter ghqg mpa /r regress mpa ghq

scatter rosenberg mee /r regress mee rosenberg

scatter rosenberg mdp /r regress mdp rosenberg

scatter rosenberg mpa /r regress mpa rosenberg

scatter mee mdp /r regress mdp mee

scatter mee mpa /r regress mpa mee

scatter mdp mpa /r regress mpa mdp

In this exercise we have ignored considerations about which variable is the independent or explanatory variable and
which variable is the dependent or response variable (see page 80). Associations (none of which are particularly strong)
exist between the following variables:

y-variable x-variable r 95% C.I.
ROSENBERG GHQ 0.33 0.18-0.46
MEE GHQ 0.58 0.41-0.71
MEE ROSENBERG 0.29 0.08 - 0.47
MDP MEE 0.29 0.08 - 0.48

We will concentrate on the association between the GHQ and ROSENBERG variables. The command:

regress rosenberg ghg

produces the following output:

B 95% confidence Partial
Variable Mean coefficient Lower Upper Std Error F-test
GHQ 7.7947 0.2762311 0.148804 0.403658 0.065014 18.0524
Y-Intercept 16.5554701

Residuals may be calculated and displayed using the following commands:

define rosenresid ##.####
rosenresid = rosenberg -
scatter ghqg rosenresid

(16.5554701 + (0.2762311 * ghq))

The scatter plot is a random cloud of points indicating that the straight line:

scatter ghg rosenberg /r

summarises the data well and that no transformation need be applied to either variable.
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Statistical tables

Statistical tables

The following pages show partial statistical tables for the chi-square distribution, the sum of ranks in the smallest groups
in the Wilcoxon rank sum test (U), and the F-distributions with examples of how to use them.

ANALYSIS automatically calculates p-values for most procedures but does not do so for the F under linear regression.
If you intend to use ANALYSIS to perform linear regression you will have to refer to the table on page 92 to obtain a p-
value. If you intend to use ANALYSIS to perform multiple linear regression you will need to purchase a set of statistical
tables. A suitable set of tables is:

Neave HR, Elementary Statistical Tables, Routledge, 1981
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Statistical tables

Percentage points of the chi-square distribution

In the following table ROSE20PLUS indicates a score of twenty or more for the Rosenberg Self-Esteem Scale and
GHQCASE indicates a score of five or more for the GHQ-28 questionnaire:

GHQCASE
ROSE20PLUS |CASE NOT CASE | Total
___________ S O
+ | 49 20 | 69
- 42 41 | 83
___________ +_________________+______
Total | 91 61 | 152

and yields a Pearson's chi-square statistic of 6.53. The degrees of freedom for this table are:
(rows - 1) * (columns - 1) = (2 - 1) * (2 - 1) =1

From the table below we can see that for a chi-square of 6.53 on 1 degree of freedom the p-value is between p = 0.05
and p=0.01:

p-value
0.05 0.01 0.005 0.001
3.84 6.63 7.88 10.83
5.99 9.21 10.60 13.82
7.81 11.34 12.84 16.27
9.49 13.28 14.86 18.47
11.07 15.09 16.75 20.52
12.59 16.81 18.55 22.46
14.07 18.48 20.28 24.32
15.51 20.09 21.96 26.13
16.92 21.67 23.59 27.88
18.31 23.21 25.19 29.59
19.68 24.73 26.76 31.26
21.03 26.22 28.30 3291
22.36 27.69 29.82 34.53
23.68 29.14 31.32 36.12
25.00 30.58 32.80 37.70
26.30 32.00 34.27 39.25
27.59 33.41 35.72 40.79
28.87 34.81 37.16 42.31
30.14 36.19 38.58 43.82
31.41 37.57 40.00 45.32
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This would be reported as:

'"We found an association between a score of twenty or higher on the Rosenberg Self-Esteem scale and a score
of five or higher on the GHQ-28 scale (chi-square = 6.53, p < 0.05).'

Note that only a partial table is shown here as ANALYSIS calculates and reports a p-value automatically.
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Statistical tables

Critical ranges for the Wilcoxon Rank Sum Test

The Worked Example of the Wilcoxon Rank-Sum Test shown a page 71 yielded a U-statistic of 33.5 with sample sizes
for the two groups of five and six. The table below shows 33.5 to be within the critical range of 18 to 42 at p = 0.05 for
group sizes of five and six:

p-value

n, 0.05 0.01 0.001
5,5 17 to 38 15 to 40
5,6 18 to 42 16 to 44
5,7 20 to 45 17 to 48
5,8
5,9

21 to 49 17 to 53
22 to 53 18 to 57 15 to 60

5,10 23t057 | 19to 6l 15 to 65
5,11 24to 61 | 20to 65 | 16to 69
5,12 26t064 | 21t069 | 16to 74
5,13 27t068 | 22t073 | 17to 78
5,14 28t072 | 22t0o78 | 17to 83
5,15 29t076 | 23t082 | 18to 87
5,16 31t079 | 24to86 | 181092
5,17 32t083 | 25t090 [ 191096
5,18 33t087 | 26t094 | 19to 101
5,19 34t091 | 27t0o98 [ 20to 105
5,20 35t095 | 28t0 102 [ 20to 110
nj, n, = sample sizes of two groups
Significant if sum of ranks (U) in smallest
group is on boundary or outside of range

This would be reported as:

'"We found no association between group membership and GHQ-28 score (Wilcoxon Rank-Sum Test, U = 33.5,
p>0.05)"

Note that only a partial table is shown here as ANALYSIS calculates and reports a p-value automatically.
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Statistical tables

Percentage points of the Fdistribution

The following output:

Source df Sum of Squares Mean Square F-statistic
Regression 1 1177.6686 1177.6686 40.57
Residuals 81 2351.3917 29.0295
Total 82 3529.0602
B Coefficients

B 95% confidence Partial
Variable Mean coefficient Lower Upper Std Error F-test
MEE 24.9036 0.3762896 0.260495 0.492084 0.059079 40.5680
Y-Intercept 0.3398722

was produced by the command:
regress ghqg = mee

Degrees of freedom df; is the number of independent variables (1) and the degrees of freedom df, is the number of
cases minus the number of independent variables minus one (81).

From the table below we can see that the p-value for ' of 40.57 on 1 and 81 degrees of freedom (we have to look at the

values for df, = 60 and df, = 120) is p < 0.001:

df, p -value df; =1 df, p - value df; =1
10 0.05 4.96 25 0.05 4.24
0.01 10.04 0.01 7.77
0.001 21.04 0.001 13.88
12 0.05 4.75 30 0.05 4.17
0.01 9.33 0.01 7.56
0.001 18.64 0.001 13.29
14 0.05 4.60 40 0.05 4.08
0.01 8.86 0.01 7.31
0.001 17.14 0.001 12.61
16 0.05 4.49 60 0.05 4.00
0.01 8.53 0.01 7.08
0.001 16.12 0.001 11.97
18 0.05 4.41 120 0.05 3.92
0.01 8.29 0.01 6.85
0.001 15.38 0.001 11.38
20 0.05 4.35 0 0.05 3.84
0.01 8.10 0.01 6.63
0.001 14.82 0.001 10.83

This would be reported as:

'We found an association between the Maslach Emotional Exhaustion scale and the GHQ-28 score (F = 40.57,

df=81p>0.001)"

It may also be appropriate to quote the Pearson correlation coefficient in this situation.

Note that you do not need to use this table to assess the significance of F with the MEANS command as ANALYSIS

calculates a p-value automatically.
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