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HOW TO USE WINPEPI: an ABC 
 
A. Obtain the latest version 
 
The latest set of WINPEPI programs and manuals can be downloaded free from www.brixtonhealth.com.   

 

 

B. Install 
 

Run winpepisetup.exe. This will put the programs and manuals in a folder of your choice  (replacing any 

previous versions in that folder) and will place a WINPEPI portal (a “WINPEPI” icon) on your desktop. It may 

be convenient to pin the Portal to the Start menu or the Taskbar. 

If you downloaded winpepifiles.zip, you will have to copy its contents to a folder of your choice, and manually 

put a shortcut to winpepi.exe on your desktop.  

 

C. Use the WINPEPI Portal and find the procedure you want 

There are seven WINPEPI  programs:  DESCRIBE (for descriptive epidemiology) COMPARE2  (to compare 

two independent groups or samples),  PAIRSetc (to compare matched observations). LOGISTIC and 
POISSON (for multiple logistic and Poisson regression),  WHATIS (various utilities, including a calculator), 

and ETCETERA (miscellaneous procedures). Each program has a number of modules (over 120 in all), each of 

which offers a number of statistical procedures. 

Open the WINPEPI Portal, which provides access to all the programs and manuals, and to WINPEPI’s Finder, 

which is an alphabetical index  to the statistical procedures. The Portal also provides access  to a published 

overview of the programs and their learning/teaching potential, and to the web-site offering the latest version of 

WINPEPI.  Among other options, it provides a magnifying glass, for users with poor vision or small monitors. 

The Finder can also be accessed (in any WINPEPI program) by pressing F9 or clicking on “Winpepi”. 

If you know what program and module are required, open the program by clicking on it in the Portal. 

Otherwise, search the Finder  for the procedure you require.  The Finder will tell you what module to use. 

THE ESSENTIAL REQUIREMENT IS THAT YOU SHOULD KNOW WHAT YOU WANT.  

If you open the Finder and search for “Multiple linear regression”,  for example, you will be directed to  

ETCETERA  J, i.e. to module J of ETCETERA . You would then open ETCETERA and click on J. 

You may be offered alternatives. For an equivalence test for proportions, for example, the FINDER will say 

“COMPARE2 A,  PAIRSetc A”, i.e., either module A of COMPARE2 or module A of PAIRSetc. If the 

observations are independent, COMPARE2 is appropriate; if they are paired, PAIRSetc is appropriate. 

You may have to open the programs to find precisely what each module offers. For example, a search for 

“Diagnostic tests,  of”, will direct you to  “DESCRIBE L1, L4, L5,  PAIRSetc D1, D2, D3”. When you open 

DESCRIBE, clicking on “L” will reveal that module L1 refers to “Yes/No” tests, and L4 and L5 to tests with a 

range of results. In PAIRSetc, modules D1, D2 and D3 (respectively) are appropriate for comparing normally-, 

log-normally-, or non-normally-distributed results with a gold standard. 

 

It is unwise to use a statistical  procedure whose use one does not understand. This manual cannot supply 

this knowledge, and it is certainly no substitute for the basic understanding of statistics and 

epidemiological thinking that is essential for the wise choice of methods and the correct interpretation of 

their results. 
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D. Open the WINPEPI program and select a module 

Open the selected  program, via the Portal or by clicking on its icon or name  in Explorer. 

You will generally be presented with a menu, from which you should make a selection.  Some options may be 

offered in the horizontal menu at the top of the opening screen. 

 

A data-entry screen will then appear. You may be asked to make a further choice before entering the data, and 

various options may be offered  At each stage, simple instructions are provided (in yellow); pop-up hints may 

be shown. Additional help may be obtained by pressing F1 or clicking on “Help” in the top menu. For further 

information, the program’s manual can be accessed by clicking on “Manual” in the top menu. 
 

 

E.  Enter the data  
 
Two of the programs can read data files. But in most instances, data must be entered at the keyboard or pasted 

from a text file or spreadsheet. This usually requires prior counting and summarization, either manually or by 

using statistical software that processes primary data. 

 

Manual entry of data is usually easy. If entries are required in different boxes, pressing Enter or Tab after 
entering a number will generally take you to the next box; and pressing Escape will clear the entry. If several 

entries are required in the same box, press Enter or Space after each entry. 

 
Pasting data: If the data are available in a text file (created, for example, by Notepad or Microsoft Word) or a 
spreadsheet, they can be copied to the Windows clipboard [usually by pressing Ctrl-Insert or Ctrl-C], and then 

pasted into a data-entry box [usually by pressing Shift-Insert or Ctrl-V].  This can simplify data entry in boxes 

that require a number of entries (in rows or columns).  [Also, data can be copied from a data-entry box and 

pasted to a text file for future re-use; first, press Ctrl-A to mark it for copying.]  The following instructions can 

be accessed by pressing F2 (in any WINPEPI program) or clicking on “Help – Pasting”. 
 

  Precautions: 

 The data must be pasted into the box as a single block, and not piecemeal. 

 There must be no missing values (e.g., empty cells in a spreadsheet). 

 The data must be in the format required in the box, with spaces between the numbers; exact 

alignment of the  
               columns is not necessary.  For example 45 66  1 

                                                                                 20   3  132 

                                                                                 53   11  44 

 If a defined number of rows is required, this number must be entered first, e.g. in the “Number 

of categories” box. 

 If a column of row numbers is shown on the left (1, 2, etc.), ensure that the”1” is visible 

before pasting. 

 The cursor must be in the top left corner of the box when the “paste” keys are pressed. 

 

 
F. Run the program 
 
 
G. Select the results you need 
 

Do not be confused by the multiplicity of results. You can scroll down until you find the results you need; and  

ignore everything else. If you want an odds ratio and its confidence intervals, you can ignore all other results. 

 
 

WINPEPI programs offer more options than most users will ever need, and will usually display more 
results than are needed. IGNORE THE OPTIONS AND RESULTS YOU DON'T REQUIRE. 
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On the other hand, you may find some of the other results helpful. 

 

Very often, the program will  provide alternative tests and measures of effect, often with confidence intervals 

estimated by alternative methods. If there is disagreement between the results, you may find appropriate advice 

in the manual, which describes the procedures and their uses and limitations, with literature references.. 
  

 

H. (Maybe) continue the analysis 
 
After getting the first results, it may be decided to continue the analysis. It may, for example, be decided to 

repeat the analysis (by clicking on “Repeat”) and make changes in the data or the options.  After performance of 

a logistic regression analysis, options are offered for the use of the logistic coefficients to compute a probability, 

risk ratio, etc. 

 

If stratified data are entered, clicking on “Next stratum” permits entry of another stratum, and clicking on “All 

strata” provides a combined analysis of all the strata. Similarly, a meta-analysis can be performed by entering a 

table for each study as a separate stratum, and then pressing “All strata”.  (If summary data (e.g. risk rauos) are 

available for each study, a series of tables is not needed; module I of COMPARE2 might then be used.) 

 

 
I. Saving the results 

 
By default, all results (except graphs) are automatically saved in pepi.txt in the Winpepi folder, with a warning 

if its size exceeds 500K. This file can be accessed via the Portal. The default procedure can be viewed or 

changed by clicking on “Saving” in the top menu; this also provides access to pepi.txt. Optionally, graphs can 

be saved as  BMP files. 

 
Results produced during the current session are also saved (temporarily) in pepi.tmp, which can be viewed by 

clicking on “View” in the top menu. 

 

The results of a single analysis can be saved (in a new file) by clicking on “Print or save” or “Print”. 

 
 
J. Adding comments 

 

Click on “Note” (in the top menu) to add a note to the previously-shown results,  for saving with the results in 
pepi.txt. 

  

 
K. Printing the results 
 
The results of an analysis can be printed by clicking on  “Print or save” or “Print”.  Graphs can be printed at low 

or high resolution. Also, selected results can be printed from pepi.txt. 

 
 

 
L. Pasting the results to a text file 
 
All results shown on the screen are automatically copied to the Windows clipboard, from which they can be 

pasted into a Microsoft Word or other text file (preferably for display in a Courier or similar font, to ensure 

proper alignment of tabulated results). Optionally, graphs can be copied to the clipboard, replacing any  results. 

that are there. 
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Notes 

 
The programs are 32-bit applications, written with Delphi 5, and will run in any version of Microsoft Windows 

(including Windows 7), except Windows 3.  They can be run from a portable device such as a USB flash drive.) 

 

The manuals that accompany the programs  require a PDF reader, such as Adobe Acrobat or Foxit Reader. 

 

The programs and manuals refer to dichotomous variables as “Yes-No” variables, and to interval- or ratio-scale 
variables as  “numerical”.  

 

P-values derived from z and t functions are generally correct to five decimal places, those based on chi-square, 

to four decimal places, and those based on the F function to three decimal places. 

 

WINPEPI does not adhere strictly to the conventional definitions of “risk” (ratios with  count denominators. 

e.g. prevalence) and “rate” (ratios with person-time denominators, e.g incidence density), except when the 

distinction is important.  Risks may be referred to as rates when this is unlikely to cause confusion. 

 

 

 
A DO-IT-YOURSELF THREESOME 

 
1.  PLANNING A STUDY: “Research Methods in  Community Medicine: Surveys, Epidemiological Research, 

Programme Evaluation, Clinical Trials” (J.H. Abramson and Z.H. Abramson), sixth edition, 2008. John Wiley 

& Sons. 

 

2.  ANALYSING THE FINDINGS: The WinPepi suite of computer programs for epidemiologists, with their 

manuals. Can be downloaded free from  www.brixtonhealth.co 

 

3.  INTERPRETING THE RESULTS: “Making Sense of Data: A Self-Instruction Manual on the 

Interpretation of Epidemiological Data” (J.H. Abramson and Z.H.Abramson), third edition, 2001. Oxford: 

Oxford University Press. 
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                 PAIRSetc's MODULES : A  GUIDE 

 

PAIRSetc provides procedures for use in comparisons of paired and other matched  

observations, appraising their differences and agreement.   The “etc” in its name  

indicates its ability to deal with matched sets larger than pairs.  

 

Modules A to D  compare paired observations: 
 Module A  deals with "Yes-No"  (dichotomous) variables. 

 Modules B and C deal with variables with three or more categories (B for nominal 

categories and C for ordered categories. 

 Module D deals with  numerical (interval-scale or ratio-scale) variables (Module D1 for 
normally-distributed variables,  Module D2 for log-normally distributed variables, and 

Module D2 if normality is not assumed). 
 

Modules E to I analyse larger matched sets with the same number of observations per set): 
 Modules E and F for "Yes-No" variables (Module E for case-control studies using multiple 

matched controls, and Module F for other studies). 

 Module G for nominal or ordinal-category variables. 

 Modules H and I for numerical (interval-scale or ratio-scale) variables  (Module H for 

comparisons of two groups or methods, and Module I for  comparisons of 3 or more .matched 

samples or replicates). 

 

Modules J to M analyse matched sets of observations varying in size: 
 Modules J and K for "Yes-No" variables (Module J for case-control studies with varying 

numbers of matched controls, and Module K  to compute kappa).  

 Modules L and M deal with numerical (interval-scale or ratio-scale) variables (Module  L 

for comparisons of two matched groups[Module L1]  or two methods of measurement 

[Module L2], and Module M for comparisons of different-sized sets of replicate 

measurements). 

 

Modules Mis1 to Mis3  (accessed by clicking on “Misclass” in the top menu) appraise the  possible effect 

of misclassification on a paired 2 x 2 table.  

 

Modules P1 to P3 (accessed by clicking on “Power” in the top menu) estimate the power of various tests.  

 

Modules S1 to S7(accessed by clicking on “Sample size” in the top menu) estimate the sample  sizes 

required for various tests.  
  

Kappa is computed by Modules A, B, C, E , G,  J, and  K. 

Replicate numerical observations are compared by Modules D, I, and K. 

Methods of measuring a numerical variable are compared by Modules D, H, and L2. 

 

The options include: 

 

Analysis of incompletely paired data (in Modules A and D1) 

Analysis of crossover trial (in Module A) 

Measures of predictive accuracy (in Module A) 

Reconstruction of paired 2x2 table from odds ratio or P-value (in Module A). 

 Assessment of intrarater and interrater agreement (in Modules A2 and I2) 

Kappa for binocular data (in Module B) 
Regression to the mean (assessment and adjustment) (in Module D6). 

Analysis of clustered data (in Modules A and D1) 

Measures of disagreement (in Module I1). 
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A.  PAIRED OBSERVATIONS: 
“YES-NO” (DICHOTOMOUS) VARIABLE 

 

This module is appropriate for the analysis of paired observations (in different subjects or the 

same subject), where the dependent variable is a dichotomy (”yes-no”).  It appraises 

differences and agreement.  It can analyse matched-control trials and matched case-control 

studies, before-after studies, and other comparisons of paired subjects or observations, such 

as comparisons of husbands and wives, or of diagnoses made by two different observers or 

procedures.  It can handle clustered and stratified data and data collected by inverse 

sampling.  An option is offered for the reconstruction of the paired 2x2 table (based on a P 

value or odds ratio), for use in incompletely reported studies. 

 

The numbers of pairs with each combination of findings are entered in a 2 x 2 table in which 

A and B are the paired sets, and “yes" refers to the presence of the characteristic under study; 

in a case-control-study, “yes” usually refers to exposure to a risk factor or protective factor.  

Numbers of pairs are entered,  not numbers of observations. An option is offered for the entry 

of supplementary unpaired observations, which are then also used in the analysis. 

 

The controls in a case-control study or trial, and the unexposed  in a  cohort study should be 

designated “B”.  To test for equivalence, the bounds of “equivalence” must be defined, by 

specifying the largest difference  that is to be regarded as negligible (e.g. 0.05). 

 

If the data are stratified, enter each stratum in turn. For meta-analyses, enter each study as a 

separate stratum. If there are clusters of paired observations that may not be independent 

(e.g. various pairs of observations of the same person, or by the same observer), enter each 

cluster as a separate stratum.  Click on “All strata” whenever combined results are required.   

 

For each table, the program provides tests for the difference between the paired 

observations, a test of equivalence (optional), the odds ratio (with a low-bias estimator), the 

proportions (of “yes”) and their difference and ratio, the relative difference, correlation 

coefficients (including phi, the approximate tetrachoric correlation coefficient, and point-

biserial correlation coefficients), the number needed to avoid one event, attributable or 

prevented fractions (for paired case-control studies), kappa, percentage agreement , and 

related results, Gwet's AC1, Brennan and Prediger's G-index, Scott's Pi coefficient, 

Peirce's I coefficient, and Martin and Femia’s delta-based measures of agreement, the 

intraclass odds ratio, a measure of the distinguishability of categories, and the probability 

and odds of replication. Optionally, measures of predictive accuracy (in either direction) 

are displayed. For stratified data, the program provides overall tests for the difference, 

heterogeneity tests and measures, the overall odds ratio, and kappa and related results.  

Four sets of tests and measures are provided fo clustered data. A test and confidence 

intervals for the odds ratio are provided for studies using inverse sampling. 

 

Optionally, this module can analyze a crossover trial with a "yes-no" outcome, comparing 

two treatments, A and B, applied in sequence to the same subjects, after random allocation of 

the subjects to an AB (Treatment A first) or BA (Treatment B first) group. Each group must 

be entered as a separate stratum. The program compares the proportions of "yes" for the 

different treatments and sequences, estimates confidence intervals for the difference between 

“yes” outcomes, and provides odds ratios, tests for a period effect, McNemar, Mainland-

Gart, Prescott, and Schouten-Kester tests, and the number needed to treat. 
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Tests for the difference between paired observations 
 
For each table, and (if stratified data are entered) for the combined (pooled) data, the  

program provides Fisher’s and mid-P exact tests (unless the user aborts their computation or 

numbers are very large), McNemar tests (with and without a continuity correction), and a 

modified Wald test for differences between A and B.   Lui (2001b) recommends use of the 

McNemar test, uncorrected for continuity, rather than Fisher's exact test, which (like the 

corrected McNemar test) "can be quite conservative and hence lose much efficiency".  The 

uncorrected McNemar test is more powerful, and performs well even when the number of 

discordant pairs is as low as 6. On the basis of a study of 9595 scenarios, Fagerland et al. 

(2013) recommend use of the McNemar mid-P test. The modified Wald test (May and 

Johnson 1997) is said to be valid in most data situations, and to be as powerful or more 

powerful than the McNemar test in small to moderate samples. 

 

Heterogeneity tests and measures 

 

For stratified data (i.e., a series of tables), the program provides heterogeneity tests that 

compare the odds ratios in the different strata, and the kappa values in the different strata.  

These permit appraisal of the modifying effect of the stratifying variable.  The greater the 

similarity, the higher the P-value.  The tests should be interpreted with caution, since their 

power is low; if the result is significant at the 0.05 level, the hypothesis of homogeneity can 

be rejected; but “a high p-value ... does not show that the measure is uniform, it only means 

that heterogeneity ... was not detected by the test” (Rothman and Greenland 1998: 276); the 

larger the strata, the more valid the test. 

 

The program also provides two measures of heterogeneity, H and I-squared (Higgins and 

Thompson 2002), with their approximate 95% intervals.  An H value of less than 1.2 

suggests absence of noteworthy heterogeneity, whereas a value exceeding 1.5 suggests its 

presence, even if the heterogeneity test is not significant.  I-squared expresses the proportion 

of variation that can be attributed to heterogeneity (in a meta-analysis, to interstudy variation) 

rather than to sampling error; a value greater than 50% may be considered substantial 

heterogeneity (Higgins and Green 2006). 

 

Estimates of the supposed common underlying value of the odds ratio or kappa are of 

questionable value if the findings in the various strata are very disparate.   If the results are 

not uniform, explorations of possible causes - e.g. associations with study design or quality 

or with the sizes or other characteristics of the samples - may be revealing 

 

Test of equivalence 

 

The program offers an equivalence test for the proportions of “yes” in two matched  samples.  

This test may be appropriate if no statistically significant difference has been found, e.g. in 

“negative trials” that compare a new treatment with an established standard treatment, where 

there may be a reason to prefer the new treatment if it is at least as effective as the standard 

treatment.   

 

To use the test, the bounds of “equivalence” must be defined by specifying the largest 

difference between proportions (e.g., 0.05) that is to be regarded as negligible.   
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Two hypotheses are tested: these are the hypotheses that there is more than a specified  

“negligible” difference in a specific direction – i.e. (a) that the first proportion is (more than 

negligibly) larger than the second proportion, and (b) that the second proportion is (more 

than  negligibly) larger than the first proportion.   If both tests yield significant results, both 

these hypotheses are rejected, and the results imply that both the one-sided differences are 

negligible - that is, the proportions are equivalent.  If only one test is significant, this 

indicates that one proportion is at least as high as (i.e., “not inferior to”) the other.  The larger 

of the two P values is displayed as the P value for the equivalence test (Liu et al. 2002). 

 

Non-significant results may be attributable to small sample size. 

 

Standardized mean difference 
 

The population standardized mean difference (Cohen's d) is the mean difference between two 

groups expressed in standard deviation units. Two estimates are provided - a logit-based 

estimate (1989) and a probit-based estimate (Glass et al. 1981). Computer simulations 

comparing 13 different methods of computing the standardized mean difference when the 

variable has been artificially dichotomized (Sanchez-Mecca et al. 2003) showed that these 

two estimates perform well, although both produce somewhat exaggerated variances.  

 

Standardized mean differences provide a useful basis for meta-analyses if there are studies 

that present results based on dichotomization of a quantitative (continuous) outcome variable 

(in a 2x2 table format). 

 

Odds ratio 
 

The odds ratio is computed with its exact Fisher's and mid-P confidence intervals, unless 

numbers are very large or the computation is interrupted by the user, in which case Poisson-

based confidence intervals are substituted.  Wilson-score confidence intervals (recommended 

by Fagerland et al. 2014) are also computed. Jewell's low-bias estimator of the odds ratio 

(Jewell 1984) is shown.  (Alternative confidence intervals are computed for studies using 

inverse sampling: see below.) 

 

If stratified data are entered, a pooled odds ratio is computed for the combined data, with 

exact Fisher's and mid-P confidence intervals or Poisson-based confidence intervals. 

 

Proportions, difference between proportions, ratio of proportions 
 

The proportions of "yes" observations in the two samples, their absolute difference, and their 

ratio are displayed, all with their 90%, 95%, and 99% confidence intervals.  

 

For the difference between proportions, the program displays intervals based  on the score 

method (Newcombe and Altman (2000: 52), on improved Wald intervals (Agresti and Min 

2005), and on an improved Wald method with Bonett-Price Laplace adjustment  (Bonet  and 

Price 2012; recommended by Fagerland et al. 2014).  

 

For the ratio of proportions, Wald, Wilson, and Wilson-cc (continuity-corrected) intervals are 

provided; these intervals are very similar, unless the sample is very small.  The Wilson 

intervals are as good as or better than the Wald intervals, according to a simulation study by 

Bonett and Price (2006), and their use is recommended by Fagerland et al. (2014). Bonett 
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and Price regard the continuity-corrected intervals as attractive because, although they tend 

to be wider than other intervals, their coverage probability cannot drop too far below the 

specified level of confidence. 

 
The proportions of “yes” observations in the two samples, their absolute difference, and their 

ratio are displayed, all with their 90%, 95%, and 99% confidence intervals.  

 

For the difference between proportions, the program displays intervals based  on the score 

method (Newcombe and Altman (2000: 52), and improved Wald intervals (Agresti and Min 

2005).  

 

For the ratio of proportions, Wald, Wilson, and Wilson-cc (continuity-corrected) intervals 

are provided; these intervals are very similar, unless the sample is very small.  The Wilson 

intervals are as good as or better than the Wald intervals, according to a simulation study by 

Bonett and Price (2006), who regard the continuity-corrected intervals as attractive because, 

although they tend to be wider than other intervals, their coverage probability cannot drop 

too far below the specified level of confidence. 

 

Relative difference 
 
The program computes the relative difference between the proportions, with its confidence 

intervals.  This measure (Fleiss et al. 2003: 379-380) is defined as the difference between the 

numbers of “yes” responses in the samples, divided by the number of controls with “no” 

responses in sample B.  It may be useful in the analysis of clinical trials in which a group 

receiving a new treatment (entered as sample A) is compared with a control group receiving 

a standard treatment (sample B).  If “yes”' indicates a favourable response to treatment, the 

relative difference is a measure of the relative value of the new treatment, based on the 

assumption that the new treatment can benefit only those patients who fail to improve under 

the standard treatment.  It is the proportion of subjects who are expected to respond to the 

new treatment, among those who fail to respond to the standard treatment (Lui 2004: 56).  

 
Incompletely paired data 
 

Optionally, the difference between proportions can be tested or its confidence intervals 

estimated even if pairing is incomplete , i.e. if some observations are paired and others are 

unpaired, for example because of refusals, recording errors, or drop-outs.  

 

A P value is computed, based on the pooled results of significance tests of the paired data 

and the unpaired data, along the lines suggested by Kuan and Huang (2013), provided that 

the direction of the difference between proportions is the same in both sets of data, and 

provided that its calculation does not involve division by zero. Similarly, an  odds ratio (with 

its confidence intervals) is estimated from the total set of observations, using a weighted 

average of the odds ratio estimators usually used for paired and unpaired observations (Miller 

and Looney 2012); this procedure requires nonzero entries in all cells. The above results are 

valid only if “missingness” is random and not influenced by membership of set A or B or by 

the value of the “yes-no” variable. 

 

The procedure described by Tang et al. (2009) for the estimation of confidence interval is 

valid if “missingness” is random and not influenced by membership of set A or B or by the 

value of the “yes-no” variable; computer simulations show that if the sample is small or data 
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are sparse, the confidence interval may be unduly narrow and the confidence level may be 

below the specified level.  

 

Other procedures (the Z1, Z2, and Z3 tests) are appropriate if “missingness” is influenced 

either by membership of set A or B or by the value of the “yes-no” variable. These tests are 

described by Choi and Stablein (1988), who recommend use of the Z1 test (based on unpaired 

observations only) if there are few pairs and many unpaired observations, or of the Z2 test 

(the McNemar test, based on paired observations only) if there are many pairs and neither 

set, or only one set, has many unpaired observations, or of the Z3 test (based on both paired 

and unpaired observations) if there are many pairs and both sets have many unpaired 

observations.  The procedure described by Bland and Butland (undated) is also performed, as 

an alternative to Z3;  this provides confidence intervals for the difference between the 

proportions, as well as a significance test.  

 

A modified McNemar test, in which fictional pairmates are allotted to unpaired observations 

in such a way as to reduce the contrast between the proportions, is offered for use if 

“missingness” is influenced both by membership of set A or B and by the “yes-no” variable. 

This is the Z7 test of Choi and Stablein (1988). It is very conservative, and of limited value. It 

should be used only if the number of unpaired observations is extremely small in comparison 

with the number of pairs.  

 

Tests are provided for comparing the paired and unpaired observations with respect to their 

proportions of “yes”, and to the magnitude of the differences between sets A and B. 

 

Correlation coefficients 
 

Four correlation coefficients between the variables (A and B) in the 2x2 table are computed: 

the phi coefficient, which is the usual (Pearson) coefficient, applied to binary variables, and 

is appropriate if both variables are natural dichotomies based on qualitative characteristics 

(e.g cases and controls, or exposed and nonexposed); the tetrachoric correlation coefficient 

(see below), which is appropriate if both variables are quantitative ones that have been 

artificially dichotomized; and two point-biserial correlation coefficients, appropriate if one 

variable is (depending on which variable is naturally dichotomous and the other is a 

dichotomized quantitative variable (and depending on which variable is naturally 

dichotomous). 

 

Tetrachoric correlation coefficient 
  

An approximate tetrachoric correlation coefficient is computed, providing an estimate of 

what the correlation would be if the distributions were not dichotomised, assuming an 

underlying distribution that is continuous and approximately normal. The program  

computes an approximate coefficient, with its 95% confidence interval. The computation is 

not performed if there is a zero cell or undue unevenness of the marginal totals (see 

Methods). 

 

Number needed to avoid one event 
 

The program reports the number of individuals who are needed in the group with a lower rate 

in order to avoid a single case, with its approximate 95% confidence interval.  These results 

apply to studies that compare the proportions of cases (of disease, etc.) in paired subjects 
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exposed and not exposed to a risk or protective factor or treatment, and to two-period 

crossover trials. 

 

In a clinical trial the number needed has been called the “number needed to treat”' or 

“number needed to treat (benefit)” (Altman 1998), i.e. the number of patients who must be 

treated in order to prevent one event (Sinclair and Bracken 1994, Feinstein 1995).  In an 

observational study of a supposed cause of disease, it indicates the number of people whose 

exposure must be prevented in order to prevent one event (assuming that the findings reflect 

a cause-effect relationship and that the causal factor and its effect are modifiable).   

 

The number is the reciprocal of the risk difference, and the 95% confidence limits for the 

number needed in a group to avoid one case are the reciprocals of the 95% confidence limits 

for the risk difference.  Since the confidence interval for the rate difference may straddle 

zero, the confidence interval for the number needed to avoid one case may straddle infinity.  

A confidence interval of 5.5 to -2.2 is reported as  “5.5 to infinity (in the one group), then up 

to 2.2 in the other group”. 

 
Attributable or prevented fractions 
 
Attributable and prevented fractions in the exposed and in the population are computed, with 

their confidence intervals.  These are appropriate for case-control studies where the cases are 

randomly selected and the disease is rare.  Confidence intervals based on large-sample 

standard errors are provided; they should be used with caution if numbers are small. 

 

The computation of the fractions and their standard errors is based on the methods described 

by Kuritz and Landis (1987, formulae 4 to 9).  If the attributable fraction AF is negative the 

cases and controls are reversed for the purposes of computation, and the calculated 

attributable fraction is reported as the prevented fraction PF.  If a lower confidence limit for 

an AF is negative, the equivalent PF is displayed in parentheses.   

 

The confidence intervals of the attributable and prevented fractions in the exposed are 

computed by Kuritz and Landis's formulae 10 and 11.  The confidence intervals of these 

fractions in the population are generally based on the quadratic-equation method proposed by 

Lui (2001a, method 5).  If the odds ratio is 4 or more or 0.25 or less, however, or  the 

proportion of cases who are exposed is 50% or more, use is instead made of logit-

transformed estimators, as recommended by Lui (2001a, method 3). 
 
Kappa, percentage agreement, and related results 
 
Kappa is generally used to measure the agreement between two “yes”-“no” ratings (by 

different observers or tests, or by the same observer on different occasions) of the same 

individuals.  In addition to this use as  a measure of reliability, it may be used to measure 

concordance in other situations where paired samples are compared (Fleiss et al. 2003: 618-

619).  In a matched case-control study or matched-control trial, kappa may serve as an 

indication of the effectiveness of a matching procedure – it indicates the extent to which the 

findings in matched pairs are more similar than findings in individuals from different pairs 

(Fleiss et al. 2003: 618).  

 

Kappa, like other measures of agreement, reflects the agreement concerning specific subjects 

by specific raters, and can be generalized to a broader group only if the subjects are 
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representative of the broader group. As a measure of inter-rater reliability, its value depends 

on the choice of raters. Uses and misuses of kappa in epidemiology are discussed by (among 

others) Sim and Wright (2005), MacLure and Willett (1987), Thompson and Walter (1988a, 

1988b), Kraemer and Bloch (1988), Bloch and Kraemer (1989), and Feinstein and Cicchetti 

(1990). Flight and Julious (2014) emphasize that because of "the disagreeable behaviour of 

the kappa statistic", it should always be interpreted in conjunction with the percentage 

agreement, prevalence-adjusted bias-adjusted kappa, prevalence index, bias index and 

maximum attainable kappa (see below). Note that kappa for binocularratings by two 

observers is offered by module B of this program. 

  

The probability of chance agreement is taken into account in the calculation of kappa.  A 

value of 1 indicates perfect agreement  (after allowing for this probability of chance 

agreement) between ratings; 0 indicates no agreement other than what can be attributed to 

chance, and a negative value indicates less than chance agreement.  Fleiss et al. (2003) 

suggest that a value of 0.75 or more indicates excellent agreement, and 0.40 or less indicates 

poor agreement. Cicchetti and Sparrow (1981) divide Fleiss’s 0.40–0.74 group into 0.60–

0.74: good; and 0.40–0.59: fair. Alternative guidelines are: over 0.80, very good agreement; 

0.61–0.80, good; 0.41–0.60, moderate; 0.21–0.40, fair; and 0.20 or less, poor agreement 

(Landis and Koch 1977, Altman 1991). These levels may be taken into account in the 

appraisal of confidence intervals, e.g. by seeing whether the lower confidence limit lies 

above 0.40 (Basu and Basu 1995). 

 

A one-tailed test is done, indicating whether kappa is significantly higher than zero.  If kappa 

is 0.4 or more, a second test is done, indicating whether it is significantly higher than 0.4; and 

if it is 0.6 or more, a third test is done,  indicating whether it is significantly higher than 0.6. 

 

Confidence intervals are estimated both from the standard error and by a goodness-of-fit 

approach (Donner and Eliasziw 1992).  The latter intervals are more accurate than those 

based on the standard error, especially in small samples; if any of the expected frequencies is 

<1, the intervals are labelled as approximate. 

 

Paradoxical values of kappa – inconsistency with the apparent agreement – may occur 

because of bias (systematic one-sided variation between two ratings, i.e. “different 

calibration” of the observers or tests, expressed by a difference between their frequencies of 

“yes” responses) or because of a skewed “yes”-“no” distribution (inequality between the 

prevalences of “yes” and “no”) (see, e.g., Feinstein and Cicchetti 1989 and  Gwet 2010: 30-

34).  As an indication of bias, the program displays Byrt’s bias index (Byrt et al. 1993); the 

McNemar test appraises the significance of this bias.  As indicators of imbalance between 

prevalences of “yes” and “no”, it displays Byrt’s prevalence index and an index of asymmetry 

in agreement (Lantz and Nebenzahl 1996). It also displays Lantz and Nebenzahl’s index of 

asymmetry in disagreement.  All four of these indices range from 0 to 100%. A high bias 

index tends to elevate kappa, and a high prevalence index tends to decrease kappa. 

 

Two adjusted values of kappa – BAK (bias-adjusted kappa) and PABAK (prevalence-

adjusted bias-adjusted kappa) – are computed (Byrt et al. 1993) to provide an indication of 

the above effects on kappa. These adjusted values are conditional on the observed percentage 

agreement.  BAK is the value that kappa would take if there were no bias; it is equivalent to 

Scott's pi coefficient of agreement (Scott 1955) and to the intraclass kappa coefficient.  Low 

kappa values are likely to be affected by such bias.  PABAK is the value that kappa would 

take if, in addition, the prevalence of each category (as expressed by the mean of the two 
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raters' totals for the category) was equal.  PABAK may be useful in appraising agreement 

when the percentage agreement is high and kappa is paradoxically low; it approximates to 

the highest possible kappa if the percentage agreement is above about 50% (Lantz and 

Nebenzahl 1996).  PABAK is called kappa-nor by Lantz and Nebenzahl (1996), and is 

equivalent to Maxwell's RE (random error) coefficient of agreement (Maxwell 1977) and 

Bennett's S coefficient (Bennett et al. 1954).  It should be noted that simulation studies have 

suggested that PABAK may substantially overestimate agreement (Hoehler 2000).  

 

The program also displays the maximum attainable kappa consistent with the marginal totals,  

The percentage agreement is reported.  This is the percentage of individuals who are placed 

in the same category by both ratings. Unlike kappa, it is not corrected for chance agreement. 

Its significance is tested, using a one-sided test of the null hypothesis that agreement  is not 

more than might be expected by chance. The percentage of positive agreement (Ppos) and 

percentage of negative agreement (Pneg) (Cicchetti and Feinstein 1990)  are also shown, 

with their 95% confidence intervals.  The percentage of positive agreement is the percentage 

of “yes” ratings that are paralleled by a “yes” rating by the other observer or test, among all 

“yes” ratings;  and the percentage of negative agreement is the percentage of “no” ratings that 

are paralleled by a “no” rating by the other observer or test, among all “no” ratings.  An 

imbalance between these two percentages may be of interest; the program reports the 

difference between them, with its 95% confidence interval. Cicchetti and Feinstein 

recommend that, because of its sometimes paradoxical results, kappa should always be 

accompanied by Ppos and Pneg. Three alternative methods are used to estimate 95% 

confidence intervals for the indices of positive and negative agreement and the difference 

between them. Samsa’s method (Samsa 1996) is based on the assumption (not always true) 

that the two observers or tests have a similar tendency to rate subjects as “yes” or “no” (i.e., 

that they are “similarly calibrated”). According to a simulation study (Graham and Bull 

1998), its intervals tend to be too wide.  The program also applies two alternative procedures  

proposed by Graham and Bull: a delta method, which performs adequately if the sample size 

is 200 or more, and a Bayesian method, which is recommended if there are under 200 paired 

observations.  

 

In clinical practice, the percentage of positive agreement (i.e, concordant positive ratings as a 

percentage of all positive ratings) represents the probability that, if a subject has been given a 

positive rating by a typical observer, another typical observer will concur.  Similarly, the 

proportion of negative agreement expresses the probability of concurrence with a negative 

rating (Samsa 1996).  The program displays separate probabilities that a second rating will 

agree with a first “yes” or “no” rating, depending on whether rating A or B is made first. 

 

The program also displays two indices of agreement suggested by Chamberlain et al. (1975): 

the proportionate positive agreement (Pppa  or ppa) index and the proportionate negative 

agreement (Ppna or pna) index.  The proportionate positive agreement index is the percentage 

of individuals with concordant “yes” ratings, among all individuals with at least one “yes” 

rating; and the proportionate negative agreement index is the percentage of individuals with 

concordant “no” ratings, among all individuals with at least one “no” rating. 

Approximate 95% confidence intervals for the measures of positive and negative agreement 

are estimated by three methods.  Samsa’s method (Samsa 1996) is based on the assumption 

(not always true) that the two observers or tests have a similar tendency to rate subjects as 

“yes” or “no” (i.e., that they are “similarly calibrated”); according to a simulation study 
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(Graham and Bull 1998), its intervals tend to be too wide.  The delta method described by 

Graham and Bull (1998) performs adequately if the sample size is 200 or more. The Bayesian 

method is recommended if there are under 200 paired observations.  

 

If stratified data are entered (e.g. observations of individuals in different age groups), the 

heterogeneity of the kappa values in the different strata is tested, measures of heterogeneity 

(see above) are provided, three estimates of the overall kappa are computed, with their 

confidence intervals, and overall values of the percentage agreement and of the percentage 

agreement for each category are reported. The first estimate of the overall kappa is precision-

based; it is produced by weighting each kappa by the inverse of its variance (Fleiss et al. 

2003: 607).  The second uses the methods of Donner and Klar (1996); computation of the 

overall kappa is based on the common correlation model (in which the expected responses 

for each pair of observations are based on the overall prevalence of the two possible 

responses).  The associated heterogeneity test (which appraises compatibility of the stratum-

specific estimates with the overall kappa) and estimation of confidence intervals are based on 

a goodness-of-fit approach, which has been shown to provide satisfactory confidence 

intervals for combined samples with as few as 50 subjects (Donner and Eliasziw 1992).  The 

third estimate is obtained by weighting the kappa values by the sizes of the samples in the 

strata.  A simulation study suggests that this is preferable to the precision-based method if 

kappa is not zero (Barlow et al. 1991). 

 

 
Gwet’s AC1 statistic 
 
The AC1 statistic is, like kappa, a chance-corrected measure of the extent of agreement  

between raters (Gwet 2002a, 2002b, 2008, 2010).  Its main difference from kappa is that it 

bases the probability of agreement-by-chance on only the hard-to-classify subjects, using a 

model that in effect estimates their number. AC1 has been recommended for use instead of 

kappa on the grounds that its estimate of the probability of chance agreement is more 

appropriate, and that it is less influenced by differences in the propensity to give positive 

ratings and by differences in the prevalences of the response categories. It is hence more 

robust, avoiding paradoxical results. Monte Carlo simulation has demonstrated that it is less 

biased and has a smaller variance than kappa, the G-index, or the pi coefficient (Gwet 2008). 

But along with recommendations that it is preferable to kappa (e.g. Lombard et al. 2004; 

Stegmann and Lucking 2005; Haley et al. 2008, Wongpakaran et al. 2013), Blood and Spratt 

(2007) warn that “…the AC1 and AC2 statistics … remain infants in the statistical world … 

as is always the case with new statistics, caution should be exercised in their use and further 

examination should occur before they are adopted as the standard’”. 

 

The program calculates AC1's standard error and 90%, 95%, and 99% confidence intervals 

on the assumption that the subjects are a random sample of an infinitely large population. If 

the sample is drawn from a defined target population and the sampling fraction is known, the 

correct standard error can be computed as  √[SE
2
 x (1 - f)], where SE is the reported standard 

error and f is the sampling fraction, e.g. 0.1 (1 in 10). 

 
Other chance-corrected measures of agreement 
 

The G-index, or Brennan-Prediger coefficient (Brennan and Prediger 1981, Gwet 2010: 38) is 

a simple coefficient that bases the chance-probability of agreement only on the number of 

response categories. The program calculates the G-index's standard error and 90%, 95%, and 
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99% confidence intervals on the assumption that the subjects are a random sample of an 

infinitely large population. If the sample is drawn from a defined target population and the 

sampling fraction is known, the correct standard error can be computed as  √ [SE
2
 x (1 - f)], 

where SE is the reported standard error and f is the sampling fraction, e.g. 0.1 (1 in 10).  

 

Scott's pi coefficient (Scott 1955, Gwet 2010: 21) differs from kappa in that it is based on 

marginal probabilities  (the probabilities that each response category will be selected) that are 

common to both raters, not those that are specific to each rater (Gwet 2010: 38), The program 

calculates the pi coefficient’s standard error and 90%, 95%, and 99% confidence intervals on 

the assumption that the subjects are a random sample of an infinitely large population. If the 

sample is drawn from a defined target population and the sampling fraction is known, the 

correct standard error can be computed as  √ [SE
2
 x (1 - f)], where SE is the reported standard 

error and f is the sampling fraction, e.g. 0.1 (1 in 10).  The pi coefficient is equivalent to 

BAK and to the intraclass  kappa coefficient. 

 

The intraclass kappa coefficient is highly recommended (Kraemer et al. 2002, Kraemer 

2006) as a measure of reliability. It is appropriate when two sets of ratings of the same “Yes-

No” variable are compared. It is identical to BAK and to Scott’s pi coefficient. 

 

As an alternative to kappa, the program also reports a modified version of Peirce's i 

coefficient (Peirce 1884). This coefficient is based on a "mixture model" that assumes that a 

proportion of cases are "obvious" and classified correctly (using one of the pairs of marginal 

values as a "gold standard"), whereas others are "ambiguous" and classified randomly 

("guessed"). The modified i coefficient suggested by Abar and Loken (2010) for use as a 

measure of reliability in 2x2 tables (e.g. to compare two raters) is the average of two i 

coefficients,  one taking the row margins as fixed, and one taking the column margins as 

fixed. Computer simulations indicate that the modified i coefficient and kappa generally 

provide similar estimates of chance-corrected reliability, but that kappa tends to be 

downwardly biased when "guessing" tendencies are different for the two ratings, e.g. if one 

rater tends to choose "yes" in ambiguous cases and the other tends to choose "no". 

 

Intraclass odds ratio 
 
The intraclass odds ratio has been recommended as a measure of interrater agreement on 

binary measurements (Locatelli and Rousson 2016). It is the odds ratio between two 

exchangeable measurements made on the same subject, and can be interpreted as a ratio of 

the probabilities of concordance and discordance between the two raters. “A kappa value of 

0.75, which is usually taken as the threshold for a good reliability, corresponds to an 

intraclass odds ratio of at least  

49, meaning a probability of concordance at least 49 times higher than the probability of 

discordance [sic]. This may suggest... considering e.g. an intraclass odds ratio of 25 as being 

already a good reliability.” (Locatelli and Rousson 2014). 

 

Martin and Femia's delta-based measures of agreement 
 
These measures of agreement are, like kappa, chance-corrected.  They have been proposed as 

alternatives to kappa (Martin and Femia 2004, 2008) that are free of kappa's limitations. The 

program estimates the "overall index", which is the chance-corrected number of "A:yes-

B:yes" and "A:no-B:no" pairs, expressed as a percentage of all pairs) - i.e., it is a chance-

corrected index analogous to the percentage agreement - and its two component "agreement" 
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indices, namely the chance-corrected percentage of agreements with respect to "yes" 

responses (A:"yes"-B:"yes" pairs, as a percentage of all pairs), and the chance-corrected 

percentage of agreements with respect to "no" responses ('A:"no"-B:"no" pairs, as a 

percentage of all pairs).  It also provides measures of the raters' "consistency" with respect to 

"yes" responses and "no"responses respectively; these are chance-corrected indices 

analogous to the percentages of positive and negative agreement (Ppos and Pneg). The 

measures are asymptotic estimators.  Negative indices may be regarded as zero.  

Approximate standard errors are calculated.  

 

The estimator of total agreement may sometimes be deceptive, providing a non-zero value 

when there is no agreement (Martin and Femia 2008). This may be suspected if it is similar 

to either of the agreement indices and "the marginals are unbalanced in the same direction" 

(e.g., the column 1 total exceeds the column 2 total, and the row 1 total exceeds the row 2 

total).  A warning message is displayed if the latter condition applies. 

 

Measures of predictive accuracy 
 

As an option, the program provides a number of measures of predictive accuracy in both 

directions (using variable A as a predictor of variable B, and using B as a predictor of A). 

Besides the percentage agreement (the “proportion correct”) and kappa (which in this 

context may be termed the Heidke skill score or the Doolittle skill score, referring mainly to 

skill in weather forecasting), which are described above, these include Goodman and 

Kruskal’s lambda,  Peirce’s i coefficient ( which is Youden’s index and may also be termed 

Peirce’s skill score), the true skill statistic,the Hansen-Kuipers skill score, the Hansen-

Kuipers discriminant, or the Kuipers performance index), the critical success index (also 

called the ratio of verification  or the threat score), the Gilbert skill score, Yule’s Q (the odds 

ratio skill score), and  Shannon's H coefficient (entropy) The pros and cons of the various 

measures are discussed in especial detail in publications on weather forecasting, such as 

Jolliffe and Stephenson (2003). 

 

Kappa is the proportion of correct forecasts, after eliminating those forecasts that would have 

been correct purely due to chance. 

 

Goodman and Kruskal’s lambda (Goodman and Kristal 1954, Siegel and Castellan 1988: 

298-303)  is a coefficient of forecasting efficiency that expresses the capacity of one variable 

to "predict" another.  It is a "proportional reduction of error" index, i.e., an assessment of the 

proportion of incorrect predictions that can be  prevented if information about the predictor 

variable is available.  Lambda ranges from 0 (if the one variable is of no help in predicting 

the other) to 1 (if the one variable perfectly specifies the categories of the other). Its value is 

influenced by the relative sizes of the groups that are compared. 

 

Peirce’s i coefficient (Peirce 1884) can be interpreted as the accuracy for “yes” outcomes 

plus the accuracy for “no”outcomes. It answers the question: “How well did the forecast 

separate the ‘yes’ outcomes  from the ‘no’ outcomes?  

 

The critical success index is the proportion of correct forecasts of a “yes” outcome, when 

correct forecasts of a “no” outcome are completely ignored. 

 

The Gilbert skill score is a modification of the critical success score, expressing the 

proportion of correct forecasts of a “yes” outcome when allowing for the number of correct 
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forecasts that would have been obtained by chance (using a formula that does not ignore the 

correct forecasts of a “no” outcome). 

 

Yule’s Q, which is based on the odds ratio and is not influenced by the incidence of “yes” 

outcomes, has been recommended as a powerful way of testing the association between 

forecasts and observations (Stephenson 2000). 

 

Shannon's H coefficient (entropy) is a meaure of the unpredictability of a variable. It 

indicates how much information is required in order to predict the distribution of the 

variable. It is here reported as the predictive accuracy (0 to 1) of the other variable. 
 

 
Distinguishability of categories 
 
A measure of the distinguishability of the categories (Darroch and  McCloud 1986) is 

computed.  This may be useful in a methodological study in which the matched observations 

represent separate ratings.   The measure ranges from 100% if there are no disagreements, to 

zero if disagreements outnumber agreements. 

 

Inverse sampling 

 

Inverse sampling refers to the addition of pairs to the sample until a prespecified number of 

pairs with a specific combination of attributes has been found.  The computation is based on 

the assumption that it is the number of pairs with an  A: “no”, B: “yes” combination that was 

specified in advance (the two sets of observations should be labelled accordingly when 

entering the findings).  This method of sampling is appropriate only if subjects are accrued 

sequentially and their attributes can be determined rapidly 

 

The program provides an appropriate  test for the difference between the observations, and 

exact 90%, 95%, and 99% confidence intervals for the odds ratio. 

 
 
Probability and odds of replication  
  

Prep, which predicts the probability that an effect will be replicated in other studies, was proposed 

by Killeen (2005) as an alternative to significance tests in evaluating research and as an aid in 

practical decision making (Sanabria and Killeen 2007}. The measure predicts the probability that 

a replication will find a difference in the same direction (i.e., a "same-sign" result, not necessarily 

statistically significant) as that found in the original study. Its appropriateness and accuracy have 

been debated (Iverson et al. 2009, Lecoutre and Killeen 2010, Killeen 2010)).  Iverson et al.. 

argue that it overestimates the probability of replication. Cumming (2005), who states that 

"Killeen's Prep is wonderful, but may be difficult to understand", prefers to refer to it as the 

average probability of replication (APR), i.e. the chance of a same-sign result, when averaged 

over studies in similar populations. As Killeen (2005) points out, a particular value of Prep may be 

more or less representative of P(rep) values found for other studies carried out under similar 

conditions.  

  

The program also reports the odds in favour of obtaining a same-sign effect, i.e. Prep / [1 - Prep], 

as suggested by Baguley (2012). 
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Clustered data 
 
Some studies are based on clusters of paired “yes”-”no” observations that may not be 

independent, e.g. pairs of observations of the same person, or by the same observer.  The 

study might, for example, be a clinical trial of the effects of treatment applied to the eyes of 

patients with early signs of cataract, based on before-after appraisals of visual acuity 

(“impaired” or “normal”).  Since a person's two eyes may be similar, the findings may not be 

independent, and a simple McNemar test based on the pooled data might yield a spuriously 

high level of significance.   Clustering  may  similarly occur in a study in which paired 

observations are made on multiple teeth belonging to the same person, or on multiple blood 

or tissue samples, or in a study in which different observers of the same subject participate.  

In such studies the data comprise clusters of related observations, one cluster per subject or 

per observer.  Clusters may contain different numbers (one or more) of pairs of observations. 

 

To analyse clustered data, all that is required is to enter each cluster as a separate stratum.  

When the combined strata are analysed, the effect of clustering is appraised and allowed for. 

 

Four procedures are provided for this purpose: those described by Eliasziw and Donner 

(1991), by Obuchowski (1998),  and by Durkalski et al. (2003), and a modification of the 

Obuchowski test,  proposed by Yang et al. (2010)..  The Eliasziw-Donner procedure adjusts 

the McNemar test and estimates adjusted confidence intervals for the odds ratio.  The 

adjusted McNemar chi-square differs from the unadjusted McNemar chi-square only if at 

least one cluster contains two or more discrepant pairs of observations, the Obuchowski and 

Durkalski procedures provide significance tests and adjusted confidence intervals for the 

difference between the proportions of “yes” responses in the sets of paired observations, and 

the modified Obuchowski procedure provides a significance test. 

 
The relative value of the four tests varies in different circumstances. The Obuchowski test is 

slightly less powerful than the Eliasziw-Donner test (Obuchowski 1998), and is more 

powerful than the Durkalski test if cluster size is very variable (Durkalski et al. 2003).  On 

the basis of computer simulations, Yang et al. (2010)  conclude that their modified 

Obuchowski test is the most powerful, the original Obuchowski test is the most conservative, 

and the performance of Durkalski's test varies between the original and modified 

Obuchowski tests. They recommend use of the modified Obuchowski test if the clusters are 

of equal size. If the clusters  differ in size, they recommend use of Durkalski's test if the 

number of clusters is small (below 50), and the modified Obuchowski test if there is a large 

number of dusters. 

 

Crossover trial 
 
The crossover study must have a “yes-no” outcome, where “yes” may, in different studies, 

indicate "success", e.g. reduction of a symptom, or a patient’s preference for a treatment, or  

"failure", e.g. occurrence of a symptom. It compares two treatments, A and B (one of which 

might be a placebo) that are applied in sequence to the same subjects, with (if necessary) an 

intervening “washout” period sufficiently long to remove the effects of the first treatment.  

Subjects are randomly allocated to groups that receive Treatment A first (AB sequence) or 

second (BA sequence). 
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The program computes the proportions of “yes” results for the two treatments, separately for 

the first and second periods, with significance  tests for the differences between the 

treatments.  The proportions among “informative” subjects are computed as well as those 

among all subjects, “informative” subjects being defined as those who have different 

outcomes to the two treatments.  Significance tests also compare the proportions of “ yes” 

results for the two treatments (among “informative” subjects and among all subjects) among  

subjects in the AB (Treatment A first) and BA (Treatment B first) groups. Multiple testing is 

not taken into account. 

 

The program also reports the overall difference between the proportions of “yes” results 

(among all subjects), with its 90%, 95%, and 99% confidence intervals (Schouten and Kester 

2010). 

 

Odds ratios comparing the two treatments with respect to their odds in favour of a “yes” 

result are computed separately for the AB-sequence and BA-sequence groups, as well as for 

the pooled data.  

 

The comparison of the treatments may be confounded by the effect of their sequence, unless 

there are adequate washout periods. Clues to the occurrence of a period effect (e.g., a carry-

over effect whereby the first treatment affects the outcome in the second period) may be 

provided by comparisons of the proportions of “ yes” results  (and their differences) in the 

two periods (i.e., in the AB and BA sequences), and by tests for an order effect (see below).  

According to Freeman  (1989) and Senn (2002), reliance on tests for an order effect may be 

misleading.   

 

If a period effect is suspected, the usual recommendation is to base the assessment solely on 

the first-period findings, i.e. to disregard the second period and treat the trial as a simple 

parallel-group comparison. Specifically, the  results when one treatment is given first are 

compared with the results when the other treatment is given first. But even if there is a carry-

over effect, recourse to the first-period comparison may not always be necessary. It is the less 

effective treatment that is more likely to be influenced (in the second period) by a carry-over 

effect of the other treatment.  In a trial in which a high proportion of “yes” results points to 

the success of the treatment, it may therefore be sufficient to concentrate on the treatment 

with a lower proportion of yes results in the first period, and base the assessment solely on 

the first-period findings only if this treatment’s proportion of “yes” results is substantially 

higher in the second period than in the first (Cleophas et al. 2009). Calculations suggest that 

tests for the treatment effect remain powerful even if there is a substantial carryover effect, so 

that a possible carryover effect can be ignored if the findings point to a significant treatment 

effect  (Cleophas et al. 2009). 

 

Two tests that point to a possible period (e.g. carry-over) effect are performed: (a)  a test for a 

discrepancy between the AB and BA groups in their proportions of “yes-yes” and “no-

no”results (Armitage and Hill 1982); it has been suggested that  a critical level of P < 0.1 

should be used for this test, rather than P <0.05 (Nagelkerke et al. 1986); and  (b) the 

Armitage-Hills test for treatment-by-period interaction (Armitage and Hills 1982), which is 

similar to the b est. These tests assume valid randomization of the subjects. 

 

The relative effects of the two treatments are appraised not only by the tests of the 

differences between proportions in each period, but also by McNemar, Mainland-Gart, 

Prescott, and Schouten-Kester tests.  McNemar tests, which are based on the findings in 
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“informative” subjects, are performed for the combined data and for each period separately.   

The Mainland-Gart test (Mainland 1963, p. 237; Gart 1969) is based on the findings in the 

“informative” subjects in both periods, using a 2 x 2 table formed by removing the 

noninformative subjects. Prescott’s test (Prescott 1981) is a  test for linear trend of the A:B 

relationship in a contingency table that includes the noninformative subjects as a middle 

group; it may be misleading if numbers are very small. The Schouten-Kester test (Schouten 

and Kester 2010) is based on the average of the treatment differences found in the two 

periods. The Prescott and Schouten-Kester tests make allowance for a possible period effect. 
 

The program reports the number needed to treat in order to avoid a single "yes" result (if  

"yes" indicates failure) or to produce a single yes" result (if "yes" indicates success), with its 

approximate 95% confidence interval, based on the separate data for each sequence, and then 

on the pooled data.  The number needed  is the reciprocal of the risk difference, and its 95% 

confidence limits are the reciprocals of the 95% confidence limits for the risk difference.  

Since the confidence interval for the rate difference may straddle zero, the confidence 

interval for the number needed may straddle infinity.  A confidence interval of 5.5 to -2.2 is 

reported as  "5.5 to infinity (in the one group), then up to 2.2 in the other group". 

 

Reconstruction of 2x2 table 
 

An option is offered for the reconstruction of the paired 2x2 table, based on an odds ratio or a 

two-tailed P value  (and the proportions  of "yes"  in the two groups).  This may be helpful in 

meta-analyses of studies with incompletely reported data. The reconstructed table is then 

analysed in the usual way by this module. 

 

The procedure is described by Hirji and (2011), who deal not only with the reconstruction of 

the table, but with the calculation of confidence intervals for the risk difference, the risk ratio, 

and the odds ratio. They point out that since the table can often be reconstructed by using the 

odds  ratio, use of the P value will rarely, if at all, be  necessary. 

 

The results cannot be regarded as exact, since they are influenced by the accuracy of the 

entered odds ratio or P value,  by rounding-off, and (if a P-value is used) by which 

significance test yielded the P value.  However, Hirji  and Fagerland say that if the P-value is 

known to two significant digits, the results are sufficiently accurate. They give an example 

showing that P-values ranging from 0.015 to 0.024 (all of which might be entered as 0.02) 

can produce 95% C.I.s ranging from 1.04-18.06 to 1.32-18.68 - changes which, they say, are 

"neither dramatic nor practically meaningful". They recommend use of their methods 

provided there are more than 50 pairs and the data are not too skewed or sparse. 

 

 
 
 
 

METHODS 
 
Tests for the difference between paired observations 
 
The Fisher’s and mid-P exact tests use an efficient algorithm for calculating the coefficients of the conditional 

distribution (Martin and Austin 1991, 1996), using code from David O. Martin's public-domain EXACTBB 

program.  The McNemar tests use formulae 4.3 and 4.4 of Siegel and Castellan (1988: 43). The formula for the 

modified Wald test (May and Johnson 1997) is 
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 chi-sq = (b – c)
2 

/ [(b + c + 1) – (b – c)
2
  / n] 

where b and c are the numbers of discrepant pairs 

 n = total number of pairs 

 

Heterogeneity tests and measures 
 
The test for the heterogeneity of odds ratios in different strata is based on a multiple-sample goodness-of fit test 

(Sokal and Rohlf 1981: 711-716; Zar 1996: 471-473), using log-likelihood chi-squares (without corrections for 

continuity) in each stratum; 0.0000001 is added to cells with frequencies of zero.  The tests are for goodness of 

fit with an equal distribution of pairs with discrepancies in different directions.   

 

The test for the heterogeneity of kappa values is based on the method of Donner and Klar (1996). 

 
The measures of heterogeneity (Higgins and Thompson 2002) are H and I-squared.  H is computed by Higgins 

and Thompson's formula 6, and increased to 1 (indicating absence of heterogeneity) if it less than 1.  A test-

based interval is computed by Method III.  I-squared and its 95% interval are computed from H, using formula 

10. 

 
Test of equivalence 
 
The program uses a test based on restricted maximum likelihood estimation (RMLE), without a continuity 

correction.  This method, described by Nam (1997), has been evaluated and recommended by Liu et al. (2002),  

who explain how to replace the standard errors in the basic formulae (formulae 4 and 5) with RMLE-based 

values. 
 

Standardized mean difference 
 

The Cox estimate uses formulae 18 and 19 of Sanchez-Mecca et al. (2003), and the Glass et al. estimate uses 

formulae 20 and 21. 

 

Odds ratio 
 

The odds ratio is b/c or  c/b, where b and c are the numbers of discrepant pairs. The low-bias estimator of the 

odds ratio (Jewell 1984) is b / (c + 1) or  c / (b + 1).   

 
Confidence intervals for odds ratios are estimated by treating the two values as Poisson variates, with their ratio 

(the odds ratio) distributed binomially (Morris and Gardner 2000: 65). Exact probabilities and confidence 

intervals are computed with an efficient algorithm for calculating the coefficients of the conditional distribution 

(Martin and Austin 1991, 1996), using code from David O. Martin's public-domain EXACTBB program. THe 

Wilson score CIs are calculated by formula 45 of Fagerland et al. 2014) [they are omitted iftheir ca;clation 

requires a division by jzero]. 

 

Proportions, difference between proportions, ratio of proportions 
 
Confidence intervals for the proportions  (of “yes”) are computed by the method described by Newcombe and 

Altman (2000: 46-47).  Confidence intervals for the difference between proportions are computed by the score 

method with a continuity correction, as recommended by Newcombe and Altman (2000: 52), which is method 

(10) of Newcombe (1998b), and by the improved Wald method (“Wald + 2”) recommended by Agresti and Min 

(2005: formula 2, with N set at 2).  

 

The Wald confidence intervals for the ratio of proportions are based on formulae 16-2 and 16-3 of Rothman 

and Greenland (1998); also formula 1 of Bonett and Price (2006).  The Wilson and Wilson-cc intervals are 

described by Bonett and Price (2006); PAIRSetc uses an adaptation of the Gauss code provided by these 

authors. 

 
Incompletely paired data 
 

The odds ratio and its confidence intervals are estimated by the procedure described by Miller and Looney 

(2012) (formulae 1 to 4). 
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The P value for the combined data (Kuan and Huang 2013) is based on pooling of the results of  a McNemar 

test of the paired data and a chi-square test of the unpaired data. The Z values provided by the two tests are 

combined, after weighting them by the square roots of (respectively) twice the number of pairs (as 

recommended, in a similar context, by Choi and Stablein 1988), and the number of unpaired observations. 

 
For incompletely paired data, the confidence intervals of the difference between proportions are computed by 

the asymptotic method described by Tang et al. (2009: formulae 1 and 2), calculating the weights as n / (n + m1) 

and n / (n + m2), as suggested by Choi and Stablein (1982).  According to supplementary explanations provided 

by Ling A (personal communication), if m1 is zero the term in formula 1 that has m1 as its denominator is 

ignored, and b1 (required in formula 2) is set at zero; if m2 is zero the term in formula 1 with m2 as its 

denominator is ignored, and b2 is set at zero; if the computed standard error is zero, the whole calculation is 

repeated after substituting an adjustment constant of 0.5 for a zero number of discrepant pairs (in either 

direction); in Table V of Tang et al. (2009), the correct C.I. by this method is (-1, -0.1590), and not (--/796, -

0.071) as misprinted. (Ling A, personal communication)  

 

The Z1, Z2, Z3, and Z7 tests are  described by Choi and Stablein (1988).  Z3 uses a weighted combination of Z1 

(the result for unpaired observations) and Z2 (the result for paired observations). In computing the weighting 
factor used in the calculation of Z3, each pair is counted as two observations. 

 

For Z7, missing observations are replaced by fictional results, in such a way as to reduce the contrast between 

the proportions.  For example, if the number of A: “yes”, B: “no” pairs (n10) exceeds the number of  A: “no”, B: 

“yes” pairs (n01), missing observations are changed to “yes” if the known result for A is “no”, and to “no” if the 

known result for B is “yes”; whereas if n01 exceeds n10, missing observations are changed to “no” if the known 

result for A is “yes”, or to “yes” if the  known result for B is “no”. The adjusted proportions are reported, and a 

McNemar test is performed: 

            chi-sq. (1 d.f.) = (n10 – n01)
2
 / (n10 + n01) 

If the adjustments produce a reversal in the direction of the relationship between n10 and n01, the adjusted 

proportions are not reported, and P is reported as 1.  

 

The procedure described by Bland and Butland (undated) is performed only if there is at least one unpaired 

observation in each set.  The procedure uses weighted averages of the differences (between proportions) 

observed in  the paired and unpaired data.  There are misprints in the formulae for the variances of these 

differences: in each formula, the “plus” sign between the two terms is misprinted as a “minus” sign. The 

comparison of paired and unpaired observations is based on these variance formulae. The test for the difference 

between the differences in the paired and unpaired dat is omitted if it involves division by zero. 
 

Relative difference 
 
The relative difference is calculated by formula 13.16 of Fleiss et al. (2003: 379), and its confidence intervals 

by the log-transformation method described by  Lui  (2004: 57: formula 3.22). 

 

Number needed to avoid one event 
 
The number is the reciprocal of the risk difference, and the 95% confidence limits for the number needed in a 

group to avoid one case are the reciprocals of the 95% confidence limits.  The program uses the method 

described by Walter (2001) for a crossover design with discrete data (formulae 2 and 3).  
 

Correlation coefficients 
 
The phi coefficient is computed by formula 16.20 in Sheskin (2007). 

 

The formula used  for the tetrachoric correlation coefficient   (Edwards and Edwards 1984) is 

 (OR
π/4

 – 1) / (
ORπ/4

 + 1) 
where OR = ad/bc 

 a and d = numbers of concordant pairs 

b and c = numbers of discordant pairs 

 

This simple method, which was used by Stata until recently, provides an approximation that is acceptable in 

many situations ( Digby 1983, referring to an almost identical formula [with ¾ instead of pi/4] ) but that can be 
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very inaccurate (Uebersax (2000).  V. Wiggins, of the Stata Corporation, in a reply cited  by Gunther and Hofler 

(2006), says that the approximation works well when the marginals in both directions are above 10%.  

PAIRSetc does not display the coefficient unless this condition is met, and there are no zero cells. An 

approximate 95% confidence interval is estimated from a large-sample estimate of the standard error (cited by 

Digby (1983). 

 
The point-biserial correlation coefficients are computed by formula 3 of Ulrich and Wirtz (2004). 

 

Attributable and prevented fractions 
 
The computation of the fractions and their standard errors is based on the methods of  Kuritz and Landis (1987, 

formulae 4 to 9).  If the attributable fraction AF is negative the cases and controls are reversed for the purposes 

of computation, and the calculated attributable fraction is reported as the prevented fraction PF.  If a lower 

confidence limit for an AF is negative, the equivalent PF is displayed (and vice versa), using the formulae 

PF = 1 - 1 / (1 - AF) 

AF = 1 + 1 / (PF - 1) 
The confidence intervals of the attributable and prevented fractions in the exposed are computed by Kuritz and 

Landis's formulae 10 and 11.  The confidence intervals of these fractions in the population are generally based 

on the quadratic-equation method proposed by Lui (2001a, method 5); their computation is sometimes 

prevented by a need to calculate the square root of a negative value.  If the odds ratio is 4 or more or 0.25 or 
less, however, or the proportion of cases who are exposed is 50% or more, use is instead made of logit-

transformed estimators, as recommended by Lui (2001a, method 3). 

 

Kappa and related results 
 
The basic formulae are provided by Fleiss et al. 2003: chapter 18).  Kappa is calculated by formula 18.12.  For 

tests of the null hypothesis that kappa is zero (formulae 18.14 and 18.35), the standard error (for an underlying 

zero value of kappa) is calculated by formula 18.13.   For tests of the hypothesis that kappa has an underlying 

value other than zero, and for confidence intervals, the standard error appropriate for non-zero values is 

calculated by formula 18.15. 

 
The maximum attainable value of kappa is computed by calculating kappa when taking the marginal totals as 

fixed but modifying the body of the table so as to represent the maximum possible agreement,  by using, for 

each cell indicating agreement, the smaller of the two relevant marginal frequencies.  

 

Confidence intervals are estimated by two methods: by using the standard error (if the upper confidence limit 

exceeds 1, it is reduced to 1), and by the goodness-of-fit approach explained by Donner and Eliasziw (1992), 

which uses a model in which the expected frequencies of "yes"-"yes", "yes"-"no", and "no"-"no" observations 

are computed from the overall prevalence of "yes" responses. 

 

Bias is appraised by the McNemar chi-square test (see above) .   

 
Indices of asymmetry in agreement and disagreement are calculated (as percentages) by formulae provided by  

Lantz and Nebenzahl (1996), who refer to them as indices of symmetry.  The index of asymmetry in agreement  

is |a – d| / (a + d) x 100, where a and d  are the numbers of nondiscrepant pairs, and the index of asymmetry 

in disagreement is  |b – c| / (b + c ) x 100  where b and c  are the numbers of discrepant pairs. The bias 

index is |b – c| / N x 100, and the prevalence index is |a – d| / N x 100, where N is the sample size (Byrt et 

al. 1993) 

 

BAK (bias-adjusted kappa) and PABAK (prevalence-adjusted bias-adjusted kappa) are computed by the 

methods described by Byrt et al. (1993). 
 

In the combined analysis of several samples or strata, the estimate of the supposed common or overall value of 

kappa is calculated in three ways: by computing a weighted mean, using the inverse of the variance of each 

kappa as its weight (Fleiss et al. 2003: formula 18.21); by the methods of Donner and Klar (1996), which use 

the common  correlation model (the expected responses for each pair of observations are based on the overall 

prevalence of the two possible responses); and by computing a weighted mean, using the size of the stratum as 

the weight.  The confidence intervals of the common kappa are estimated by formula 18.23 of Fleiss et al. 

(2003) and by the goodness-of-fit approach of Donner and Klar (1996). 
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The heterogeneity tests are based on formula 18.22 of Fleiss et al. (2003) and the goodness-of-fit approach of 

Donner and Klar (1996).  The measures of heterogeneity  (Higgins and Thompson 2002) are described above. 

 

The percentage agreement is  (a + d) / n, 

where a = “yes-yes” pairs 

 b = “yes-no” pairs 

 c = “no-yes” pairs 

 d = “no-no” pairs 

 n = a + b + c + d 

 
Significance is tested by a binomial test comparing the total number of complete agreements with the number 

expected by chance (Sheskin 2007: 729-730). 

 

If stratified data are entered, the overall values of the percentage agreement are based on the pooled data; this is 

equivalent to weighting the stratum-specific values by sample sizes.  

 

The formulae for the Chamberlain indices of agreement (Chamberlain et al. 1975), ppa (the proportionate 

positive agreement index, and pna  the proportionate negative agreement index), are 

 ppa = a / (a + b + c) 

and pna = d / (d + b + c) 
and the formulae for the Cicchetti-Feinstein indices (Cicchetti and Feinstein 1990), Ppos (the positive 

agreement index), and Pneg (the negative agreement index) are: 

 Ppos = 2a / (2a + b + c)) 

and Pneg = 2d / (2d + b + c)) 

(These indices are related:  ppa = Ppos / (2 – Ppos), and pna = Pneg / (2 – Pneg). 

Three alternative methods are used to estimate 95% confidence intervals for these indices: Samsa's method and 

delta and Bayesian methods.   Samsa’s procedure (Samsa 1996) is based on a variance calculated as  P(1 – P) 

/ g, where P is the index and g is the number of subjects rated in the same way by one of the raters or tests; 

e.g.., for subjects rated “no”, g  =  (b +  d) or (c + d).  Since either rater or test may be chosen for this purpose, 

the method will yield two different confidence intervals if calibration is not identical.  PAIRSETC therefore 
uses the mean of these two alternative numbers (rounded off downwards).   

The delta and Bayesian methods are described by Graham and Bull (1998).   

 

These three methods are also used to estimate 95% confidence intervals for the difference between the  

percentages of positive agreement (Ppos) and negative agreement (Pneg).  The estimates are   

(Ppos – Pneg) ± 1.96√[(var(Ppos) + var(Pneg)] using variance estimates obtained by Samsa’s 

method, and  (Ppos – Pneg) ± 1.96√var(Ppos – Pneg) by the method of Graham and Bull, who 

provide a formula for var(Ppos – Pneg).  The interval based on the Samsa variances must be regarded as very 

approximate since, as pointed out by Graham and Bull, it ignores the covariance between Ppos and Pneg. The 

Bayesian estimates (see below) are based on a Monte Carlo procedure. In the output, the difference is expressed 
as Ppos - Pneg if Ppos is larger, and as Pneg - Ppos if Pneg is larger.  

 

The Bayesian intervals (for Ppos, Pneg and their difference) are estimated by Monte Carlo procedures in which  

5000 samples are generated, using the algorithm presented in Appendix A of Graham and Bull (1998), with an 

almost noninformative" prior distribution of 0.25 in each cell. The 95% interval estimates are obtained from the 

2.5th and 97.5th percentiles of the simulated distributions.  The beta variates are generated by algorithm BB or 

BC depending on the relative sizes of the adjusted cell values) of Cheng (1978). The random numbers used by 

these procedures are generated by a pseudo-random number generator described by Wichman and Hill (1985), 

which derives each number in turn from three seed numbers (in the range 1 – 30,000) which it modifies for 

subsequent use.  The initial seed numbers are generated by Delphi's inbuilt random-number procedures: 

RANDOMIZE, which derives a preliminary seed from the system clock, and Delphi's RANDOM procedure 
(which generates three random numbers from which the required seed  numbers are computed), supplemented 

by  an additional randomizing shuffle, using the algorithm of Bays and Durham, as described by Press et al. 

(1989: 215-217). The Bayesian procedure may yield slightly different results each time it is repeated. 
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The proportionate positive agreement index and proportionate negative agreement index and their confidence 

intervals are computed by the formula (Graham and Bull 1998) 

P / (2 – P), 

where  P = (%age of positive or negative agreement or its lower or upper confidence limit) / 100. 
 

Gwet’s AC1 statistic 
 
Gwet's AC1 is calculated by formula 4.1 of Gwet (2010: 61), and its variance by formula 5.7 of Gwet  (2010: 
94). The program calculates AC1's standard error on the assumption that the subjects are a random sample of an 

infinitely large population. If the sample is drawn from a defined target population and the sampling fraction is 

known, the correct standard error can be computed as √t[SE
2
 x (1 - f)], where SE is the reported standard 

error and f is the sampling fraction, e.g. 0.1 (1 in 10). 

 

 
 
Other chance-corrected measures of agreement 
 

Brennan and  Prediger's G-index is calculated by formula 2.18 of Gwet (2010: 38), and its variance by Gwet’s 

formula 5.10). The program calculates the G-index's standard error on the assumption that the subjects are a 

random sample of an infinitely large population. If the sample is drawn from a defined target population and the 

sampling fraction is known, the correct standard error can be computed as √t[SE2 x (1 - f)], where SE is the 

reported standard error and f is the sampling fraction, e.g. 0.1 (1 in 10). 

 

Scott's pi coefficient is calculated by formula 2.6 of Gwet (2010: 21), and its variance by Gwet’s formula 5.8  

The program calculates the standard error of pi on the assumption that the subjects are a random sample of an 

infinitely large population. If the sample is drawn from a defined target population and the sampling fraction is 
known, the correct standard error can be computed as √t[SE2 x (1 - f)], where SE is the reported standard error 

and f is the sampling fraction, e.g. 0.1 (1 in 10). 

 

The formula for the modified Peirce’s i coefficient (Abar and Loken 2010)  is 

0.5{(ad - bc) / [(a + c)(b + d)] + (ad - bc) / [(a + b)(c + d)]} 
where  a   b 

c   d  represent the four cells of the 2x2 table. 
[An error in the reporting of this coefficient was corrected in version 3563.] 

 

Intraclass odds ratio 
 
Formula 8 of Locatelli and Rousson (2016) is used for the intraclass odds ratio and formula A5 for the variance 

of its logarithm. 

 

Intraclass kappa coefficient 
 
The intraclass kappa coefficient is computed by formula 2.40 of Vanbelle (2009): 

 Kappa = (Po – Pe) / (1 – Pe) 

where Po = (a + d)/ N 

 Pe =((2 a + b + c) / 2N)
2 
+ ((2d + b +  c) / 2N)

2
 

       N = a + b + c + d  
where  a   b 

c   d  represent the four cells of the 2x2 table. 

 

Martin and Femia's delta-based measures of agreement 
 

Formulae for the asymptotic estimators for chance-corrected overall agreement (the overall index), for 

agreement with respect to "yes" and "no" responses, and for consistency, and for their variances, are provided 

by Martin and Femia (2008: Table 6). Before computation, 1 is added to each of the cells in the 2 x 2 table, to 

improve the performance of the estimators.  It is assumed that the total sample size is fixed in advance, but not 

the row or column marginal totals. 
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Measures of predictive accuracy 
 

The formulae for lambda (Goodman and Kristal 1954, Siegel and Castellan 1988: formulae 9.37 and 9.39) are: 

lambda = (SumCell1  - maxR)  / (n - maxR) if variable A is the predictor;  

 lambda = (SumCell 2 - maxC)  / (n - maxC) if variable B is the predictor, 
where SumCell1 = (the larger of a and c ) + (the larger of b and d)  

 SumCell2 = (the larger of a and b ) + (the larger of c and d)  

MaxR = the larger of the two row totals, i.e., (a + b) or (c + d) 
    MaxC = the larger of the two column totals, i.e.. (a + c) or (b + d) 

 a, b, c, and d are the frequencies in the 2x2 table: 

                                            A      

                                        Yes No 

      B   Yes          a    b 

                 No           c    d    

n = a + b + c + d 

The standard error of lambda (on which its approximate 95% confidence interval is based) is calculated by 

formulae 9.38 and 9.40 of Siegel and Castellan (1988). If the lower limit is less than 0, it is taken as 0; if the 

upper limit is above 1, it is taken as 1. 
 

Proportion correct = (a + d) / n 
Its confidence interval is estimated by Wilson’s  method, recommended by Newcombe and Altman (2000: 46-

47). 

 

Kappa may be calculated as (PC – E) / (1 – E) 
where  PC = proportion correct 

 E = [(a + c) / n] [(a + b) / n] + [(b + d) / n] [ [(c + d) / n] 

or as  2(ad – bc) / [(ac+ c)(c + d) + (a + b)(b + d)] 
The standard error used for estimating 95% confidence intervals for kappa is calculated by formulae 18.15 to 

18.18 of Fleiss et al. (2003). 

 

Peirce’s i coefficient = (ad – bc) / [(a + c)(b + d)] 
The formulae for its standard error and confidence interval (as Youden’s index) are provided by Youden (1950) 

and cited by Salmi (1986). They is appropriate if the “yes” outcomes and the “no” outcomes are at least 20, and 
if the index is not very close to zero or one.  

 

The critical success index is a / (a + b + c) 
 

The Gilbert skill score is (a – F) / (a + b + c – F) 
where F = [(a + b)(a + c)] / n 

 

Yule’s Q  is computed, after adding 0.1 to each cell frequency, by the formula 

 (ad – bc) / (ad +  bc) 

Its 95% confidence interval is estimated,  if its value is > -1 and < 1, by formula 11 of Bonett and Price (2007). 

 

The two formulae for Shannon's H coefficient are provided in "2-way Contingency Table 

Analysis", available on the Internet at http://statpages.org/ctab2x2.html): 

H(c) = - ( (c1/t)log2(c1/t) + (c2/t)log2(c2/t) ) 

H(r) = - ( (r1/t)log2(r1/t) + (r2/t)log2(r2/t) ) 

where  H(c) is the coefficient for variable   

 H(r) is the coefficient for variable A 

 c1 = a+c 

 c2 = b+d 

 r1 = a+b 

 r2 = c+d 

 t = c1+c2 
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Probability of replication  
 
Prep is computed from the McNemar chi-square3. 

 

Prep estimates the non-centrality parameter from the maximum of (chi-square - 1) and zero (Saxena and Adam, 
1982), and evaluates that non-central chi-square by use of an approximation given by Sankaran (1963) 

(extracted from a Wikipedia article entitled "Noncentral chi-squared distribution"), modified by Killeen 

(personal communication) by multiplying the standard deviation by the square root of 2. 

 
Distinguishability of categories 
 

This measure is computed by the method described by Darroch and McLeod (1986). 
 
Inverse sampling 
 
The difference between the observations is tested by the formula (Lui 1996) : 

chi-square (1 d.f.) = (b - c)
2  

/ 2c 
where  b = A: “yes”, B: “no” 

 c = A: “no”, B: ”yes” 

Exact confidence intervals for the odds ratio are computed by formula 5.58 of Lui (2004: 112). 

 
 
Clustered data 
 
The Eliasziw-Donner procedure to adjust for the presence of clusters of non-independent paired observations 

estimates a weighted average within-cluster intraclass correlation coefficient, rho, using information on both 

concordant and discordant pairs, by the methods described in Section 4 of the paper by Eliasziw and Donner 

(1991).  The program reports the value of rho.  (Rho cannot be computed if the clusters contain only one 

discrepant pair of observations, and the procedure is then not performed). Using the methods described in 

Section 2 of the paper, a correction factor for the McNemar test is then computed (the program divides the 

McNemar chi-square by this factor).  An adjusted variance is computed for the prevalence of discrepancies in 

one direction, b / (b+c).  Confidence intervals are estimated for this prevalence, and converted to adjusted 

confidence intervals for the pooled odds ratio. ‘Not computed” is reported if a computational difficulty is 

encountered. 

 

The Obuchowski procedure for comparing correlated proportions in clustered data uses formula 6 of 

Obuchowski (1998) to compute a chi-square test statistic; for this purpose the estimator of the variance of the 

difference between the proportions of “yes” responses in the sets of paired observations is computed by formula 

4, after substituting the pooled (mean) proportion for the specific proportions in formula 2, and replacing the 

covariance estimator computed by formula 3 with that provided by formula 7.  A 95% confidence interval for 

the difference between proportions is based on the variance estimator in formula 2; the square root of this 
variance is displayed as the standard error of the difference. The formula for the modified Obuchowski test is 

provided by Yang et al. (2010), and appears just before their formula 1 . 

 

The procedure described by Durkalski et al. (2003) for the analysis of clustered matched-pair data computes 

chi-square by formula 15.  The test is not performed if the clusters contain only one discrepant pair of 

observations, since it then yields the same result as the unadjusted McNemar test. A 95% confidence interval for 

the difference between proportions (formula 18) is based on the variance estimator in formula 17; the square 

root of this variance is displayed as the standard error of the difference. 

 

The Obuchowski and Durkalski procedures are described briefly by McCarthy (2007). 

 

Crossover trial 
 
Differences between proportions of “yes” results are tested by formula 3.15 of Fleiss et al. (2003).  The overall 

difference between the proportions is based on the means of the results in  the  two periods, and its 90%, 95%, 

and 99% confidence intervals are based on the variance formula provided by Schouten and Kester  (2010: p. 

194). 
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The McNemar tests use a continuity correction  (Siegel and Castellan 1988 , formula 15.2). 

 

The  Mainland-Gart test uses the formula provided by Senn (2002: p. 130). 

For Prescott’s test, a Cochran-Armitage trend test (Armitage et al. 2002, equation 15.1) is performed, applied to 

a 2 x 3 contingency table showing, for each of the two sequence groups, the number of subjects with “yes” for  

A and “no” for B, the number with the same responses for A and B, and the number with “no” for A and “yes” 
for B (Jones and Kenward 2003: p. 114). 

 

The Schousten-Kester test  uses the variance formula (assuming a period effect) provided by Schouten and 

Kester (2010) in their Appendix A. 

 

The tests for a carry-over effect are described by Armitage and Hills (1982) – a chi-square test for the 

discrepancy between the AB and BA groups in their proportions of “yes-yes” and “no-no” results (Hills and 

Armitage 1979), and the Armitage-Hills test (Armitage and Hills 1982), which is a trend test applied to a  2 x 3 

contingency table showing, for each of the two sequence groups, the numbers of subjects with “yes-no” and 

“no-yes” results, with an intermediate category for the subjects with  (pooled) “yes-yes” and “no-no” results. 

 

The number needed to avoid/produce a single "yes" result  is the reciprocal of the risk difference, and the 95% 
confidence limits for the number needed in a group to avoid one case are the reciprocals of the 95% confidence 

limits for the risk difference.  The program uses the method described by Walter (2001) for a crossover design 

with discrete data (formulae 2 and 3).  

 

Reconstruction of 2x2 table 

 

Optionally, use can be made of an odds ratio or a two-tailed P-value. If an odds ratio is entered, the table is 

constructed by employment of the formulae in row 3 of Table 4 of Hirji  and Fagerland (2011).  If a P-value is 

entered, the formulae in row 1 are used. 
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A2.  CONCURRENT ASSESSMENT OF INTERRATER AND 

INTRARATER RELIABILITY ("YES-NO" VARIABLE) 
 

 

This module assesses interrater and intrarater reliability in a study that compares "yes-

no" ratings of the same subjects made by two raters, each of whom rate each subject twice.  

The "raters" may be different observers, different measuring instruments, or different 

methods or conditions of measurement. 

 

The four ratings of each subject are required.  

 

The program provides three measures of agreement (equivalent to kappa): one inter-rater 

reliability and (for each rater) a measure of intrarater reliability, with its standard error. 

 

 

Measures of reliability 
 

The measures of reliability (which are equivalent to kappa) are computed by the method 

described by Shoukri and Donner (2001), who conclude that the use of two ratings of each 

subject (instead of one) may allow fewer subjects to be included in studies of interrater 

reliability, with no net loss in efficiency. 

 

This procedure may also be appropriate in studies where there have to be two ratings by each 

rater, as in a study of the presence of some lesion in the eyes, or in studies of twins. 

 

METHOD 
 

The computation is based on a nested beta-binomial model. The interrater reliability is computed by formula 8 

of Shoukri and Donner (2001), the intrarater reliabilities by formulae 10 and 11, and their variances by formula 

12. 
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B.  PAIRED OBSERVATIONS:  

THREE OR MORE CATEGORIES, NOT ORDERED 
 

This module is appropriate for the analysis of paired observations (in different subjects or the 

same subject) where the dependent variable is a nominal-scale one (i.e., with categories that 

are not ordered).  It appraises differences and agreement between the two sets of 

observations.  It can be used to analyse matched-control trials and case-control studies, 

before-after studies, and other comparisons of paired subjects or observations, such as 

comparisons of husbands and wives, and diagnoses of the same individuals by two different  

observers or diagnostic techniques. 

 

The number of categories must be entered, and then the numbers of pairs with each 

combination of findings are entered in a k x k table in which the paired sets of observations 

are arbitrarily designated A and B.  The numbering and sequence of the categories is 

arbitrary, except that if there is a reference category it should be given the highest number.  

Numbers of pairs are entered, not numbers of observations. 

 

If the data are stratified, enter each stratum in turn;  for meta-analyses, enter each study as a 

separate stratum.  Click on “All strata” whenever combined results are required.   

 

For each table, the program provides tests for the difference between the two sets of 

observation (extended McNemar test, and Stuart-Maxwell and Bhapkar tests for marginal 

homogeneity) , showing the sources of disagreement (if there are up to seven categories), 

and computes odds ratios and related tests, kappa and related results, and a measure of 

the distinguishability of categories. 

For stratified data, the program provides overall tests for the difference (based on the 

pooled data) and kappa and related results. 

The module also provides an option for the comparison of binocular data (i.e. findings 

concerning the presence of an abnormality or other attribute in both eyes) reported by two 

raters. Agreement between the raters is expressed by kappa coefficients, and McNemar tests 

assess the difference between the raters, the difference between the eyes, and rater-eye 

interaction. 

 

 

Tests for the difference between paired observations 
 

For each table, the program provides extended McNemar tests for off-diagonal symmetry and 

the Stuart-Maxwell and Bhapkar testS for marginal heterogeneity. If stratified data are 

entered, extended McNemar tests are done on the combined (pooled) data. 

 

The extended McNemar (“symmetry”) test (Bowker's test for off-diagonal symmetry) tests 

the symmetry of the findings; e.g. for categories 1 and 2 (and similarly for each other pair of 

categories) it tests whether the probability that the observation will be in category 1 in one set 
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of observations and in category 2 in the second is the same as the probability of the reverse 

combination, namely category 2 in the first set and category 1 in the second.  Ordinary 

(Pearson's) and log-likelihood chi-squares are computed.  Comparisons of zero cells do not 

contribute to the chi-square. If there are comparisons of zero cells, alternative P values are 

shown, based on different degrees of freedom, namely the total number of pairs compared 

(Bowker 1948)  and this total number reduced by the number of zero-cell comparisons 

(Hoenig et al. 1995, Evans and Hoenig 1998). 

 

As a guide to the sources of disagreement (Maxwell 1970), the contribution that each pair of 

categories makes to a significant McNemar chi-square (P < 0.05) is reported (if there are up 

to seven categories). 

 

The Stuart-Maxwell and Bhapkar tests for marginal heterogeneity (Stuart 1955, Maxwell 

1970, Bhapkar 1966) test the hypothesis that the probabilities of the various categories are 

the same in the two sets of observations (are the totals of the columns the same as the totals 

of the rows?)  The Bhapkar test is more powerful than the Stuart-Maxwell test if the sample 

is small; for larger samples the two tests are essentially equivalent (Dunnigan 2013). For 

certain sets of data, these tests are impractical (Dunnigan 2013), and are omitted. The 

specific categories that manifest significant differences can be pin-pointed (see “Odds ratios 

and related tests”, below). 

 

The results of the extended McNemar and Stuart-Maxwell or Bhapkar tests cannot be 

expected to be the same, except that symmetry implies marginal homogeneity (but not vice 

versa). 

 

Odds ratios and related tests 
 

The program provides odds ratios based on the contrast between each pair of categories (if 

there are up to 10 categories).  If the odds ratio based on the contrast between two categories, 

e.g. 1 and 2 (displayed as “1:2”) is above 1, this means that the odds in favour of 1 rather 

than 2 are higher in sample A than in sample B.    

 

The consistency of these odds ratios based on pairs of categories is tested.  For example, if 

the odds ratio for category 1 versus category 2 is 3.0 and the odds ratio for category 2 versus 

category 3 is 4.0, the odds ratio for category 1 versus category 3 would be expected to be 

12.0.  Inconsistency with such expectations suggests that the odds ratios may be modified by 

the matching variables (Pike, Casagrande, and Smith 1975).  A low P value is indicative of  

inconsistency. 

 

Maximum-likelihood estimates of mutually consistent odds ratios based on the contrast 

between each pair of categories  are computed; these estimates are not very meaningful if the 

test points to mutual inconsistency. 

 

The program also computes odds ratios based on a comparison of each category with all 

other categories combined, and does McNemar tests to appraise their significance; alternative 

P-values are provided for tests of hypotheses formulated before and after seeing the results. If 

the Stuart-Maxwell test shows significant disagreement, these odds ratios and tests pinpoint 

the specific disagreements (i.e., about specific categories) that are responsible. 
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Confidence intervals are displayed for odds ratios contrasting each category with the 

reference category (the category with the highest category number), assuming mutual 

consistency. 
 
Kappa and related results 

 
The program computes an overall kappa value (for the complete set of categories), and a 

separate kappa value for each category.  In each instance, a one-tailed test is done, indicating 

whether kappa is significantly higher than zero. If kappa is 0.4 or more, a second test is done, 

indicating whether it is significantly higher than 0.4; and if it is 0.6 or more, a third test is 

done, indicating whether it is significantly higher than 0.6.  Confidence intervals for kappa 

are estimated from its standard error. Flight and Julious (2014) emphasize that because of 

"the disagreeable behaviour of the kappa statistic", it should always be interpreted in 

conjunction with the percentage agreement, prevalence-adjusted bias-adjusted kappa, 

prevalence index, bias index and maximum attainable kappa (see below). 

 

Paradoxical values of kappa may occur because of bias (systematic one-sided variation 

between two ratings) – indicated by the extended McNemar test (see above) – or a skewed 

distribution (inequality between the prevalences of the categories in the two samples).  Two 

adjusted values of the overall kappa – BAK (bias-adjusted kappa) and PABAK (prevalence-

adjusted bias-adjusted kappa) – are therefore computed (Byrt et al. 1993).  These adjusted 

values are conditional on the observed percentage agreement.  BAK is the value that kappa 

would take if there were no systematic one-sided variation between the ratings; it is 

equivalent to Scott's pi coefficient of agreement (Scott 1955).  Low kappa values are likely to 

be affected by such bias.  PABAK is the value that kappa would take if, in addition, the 

prevalence of each category (as expressed by the mean of the two raters' totals for the 

category) was equal.  PABAK may be useful in appraising agreement when the percentage 

agreement is high and kappa is paradoxically low; it approximates to the highest possible 

kappa if the percentage agreement is above about 50% (Lantz and Nebenzahl 1996).  

PABAK is called kappa-nor by Lantz and Nebenzahl (1996), and is equivalent to Maxwell's 

RE (random error) coefficient of agreement (Maxwell 1977) and Bennett's S coefficient 

(Bennett et al. 1954).  It should be noted that simulation studies have suggested that PABAK 

may substantially overestimate agreement (Hoehler 2000).  

 

The program also displays the maximum attainable overall kappa consistent with the 

marginal totals, i.e. consistent with the observed level of bias. 

 

Kappa is generally used to measure the agreement between two ratings (by different 

observers or tests, or by the same observer on different occasions) of the same individuals.  

In addition to this use as  a measure of reliability, it may be used to measure concordance in 

other situations where paired samples are compared (Fleiss et al. 2003: 617-618).  In a 

matched case-control study or matched-control trial, kappa may serve as an indication of the 

effectiveness of a matching procedure – it indicates the extent to which the findings in 

matched pairs are more similar than findings in individuals from different pairs (Fleiss et al. 

2003: 618).  Kappa, like other measures of agreement, reflects the agreement concerning 

specific subjects by specific raters, and can be generalized to a broader group only if the 

subjects are representative of the broader group. As a measure of inter-rater reliability, its 

value is determined by the selection of raters. Uses and misuses of kappa in epidemiology are 

discussed by (among others) Sim and Wright (2005), MacLure and Willett (1987), 

Thompson and Walter (1988a, 1988b)  Kraemer and Bloch (1988), and Gwet (2010: 30-34) 
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The probability of chance agreement is taken into account in the calculation of kappa.  A 

value of 1 indicates perfect agreement  (after allowing for this probability of chance 

agreement) between ratings; 0 indicates no agreement other than what can be attributed to 

chance, and a negative value indicates less than chance agreement.  Fleiss et al. (2003) 

suggest that a value of 0.75 or more indicates excellent agreement, and 0.40 or less indicates 

poor agreement. Cicchetti and Sparrow (1981) divide Fleiss’s 0.40–0.74 group into 0.60–

0.74: good; and 0.40–0.59: fair. Alternative guidelines are: over 0.80, very good agreement; 

0.61–0.80, good; 0.41–0.60, moderate; 0.21–0.40, fair; and 0.20 or less, poor agreement 

(Landis and Koch 1977, Altman 1991).   

 

The percentage agreement is also shown.  This is the percentage of individuals who are 

placed in the same category by both ratings, and (unlike kappa) it is not corrected for chance 

agreement.  In a study in which the same individuals are rated by two observers, this is the 

percentage of subjects who are placed in the same category by both raters).  Its significance 

is tested, using a one-sided test of the null hypothesis that agreement  is not more than might 

be expected by chance. The percentage agreement is also shown separately for each category 

(if there are up to six categories), together with the percentage of positive agreement and the 

percentage of negative agreement. The percentage of positive agreement is the percentage of 

“yes” ratings (for a specific category) that are paralleled by a “yes” rating by the other 

observer or test, among all “yes” ratings for that category;  and the percentage of negative 

agreement is the percentage of “no” ratings (for a specific category) that are paralleled by a 

“no” rating by the other observer or test, among all “no” ratings for that category.  In clinical 

practice, the percentage of agreement for a specific rating represents the probability that, if a 

subject has been given that rating by a typical observer, another typical observer will concur. 

 

If stratified data are entered (e.g. observations of individuals in different age groups), the 

heterogeneity of the overall kappa values in the different strata is tested, measures of 

heterogeneity (see above) are provided, two estimates of the overall kappa are computed, 

with their confidence intervals.  The first estimate of the overall kappa is precision-based; it 
is produced by weighting each kappa by the inverse of its variance (Fleiss et al. 2003: 602). The 

second estimate is obtained by weighting the kappa values by the sizes of the samples in the 

strata.  A simulation study suggests that this is preferable to the precision-based method if 

kappa is not zero (Barlow et al. 1991).   A heterogeneity test is done, and supplemented by  

two measures of heterogeneity, H and I-squared (Higgins and Thompson 2002), with their 

approximate 95% intervals.  An H value of less than 1.2 suggests absence of noteworthy  

heterogeneity, whereas a value exceeding 1.5 suggests its presence, even if the heterogeneity 

test is not significant.  I-squared expresses the proportion of variation that can be attributed to 

heterogeneity (in a meta-analysis, to interstudy variation) rather than to sampling error; a 

value greater than 50% may be considered substantial heterogeneity (Higgins and Green 

2006).  Overall values of the percentage agreement are reported.  These are based on the 

pooled data; this is equivalent to weighting the stratum-specific values by sample sizes. 

 

Other measures of chance agreement 
 

The AC1 statistic is, like kappa, a chance-corrected measure of the extent of agreement  

between raters (Gwet 2002a, 2002b, 2008, 2010).  Its main difference from kappa is that it 

bases the probability of agreement-by-chance on only the hard-to-classify subjects, using a 

model that in effect estimates their number. AC1 has been recommended for use instead of 

kappa on the grounds that its estimate of the probability of chance agreement is more 
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appropriate, and that it is less influenced by differences in the propensity to give positive 

ratings and differences in the prevalences of the response categories. It is hence more robust, 

avoiding paradoxical results. Monte Carlo simulation has demonstrated that it is less biased 

and has a smaller variance than kappa, the G-index, or the pi coefficient (Gwet 2008). But 

along with recommendations that it is preferable to kappa (e.g. Lombard et al. 2004; 

Stegmann and Lucking 2005; Haley et al. 2008, Wongpakaran et al. 2013), Blood and Spratt 

(2007) warn that “…the AC1 and AC2 statistics … remain infants in the statistical world … 

as is always the case with new statistics, caution should be exercised in their use and further 

examination should occur before they are adopted as the standard’”. 

 

The program calculates AC1's standard error and 90%, 95%, and 99% confidence intervals 

on the assumption that the subjects are a random sample of an infinitely large population. If 

the sample is drawn from a defined target population and the sampling fraction is known, the 

correct standard error can be computed as √ [SE
2
 x (1 - f)], where SE is the reported standard 

error and f is the sampling fraction, e.g. 0.1 (1 in 10). 

 

The G-index, or Brennan-Prediger coefficient (Brennan and Prediger 1981, Gwet 2010: 38) is 

a simple coefficient that bases the chance-probability of agreement only on the number of 

response categories. The program calculates the G-index's standard error and 90%, 95%, and 

99% confidence intervals on the assumption that the subjects are a random sample of an 

infinitely large population. If the sample is drawn from a defined target population and the 

sampling fraction is known, the correct standard error can be computed as √ [SE
2
 x (1 - f)], 

where SE is the reported standard error and f is the sampling fraction, e.g. 0.1 (1 in 10). 

 

Scott's pi coefficient (Scott 1955, Gwet 2010: 21) differs from kappa in that it is based on 

marginal probabilities  (the probabilities that each response category will be selected) that are 

common to both raters, not those that are specific to each rater (Gwet 2010: 38) The program 

calculates the pi coefficient’s standard error and 90%, 95%, and 99% confidence intervals on 

the assumption that the subjects are a random sample of an infinitely large population. If the 

sample is drawn from a defined target population and the sampling fraction is known, the 

correct standard error can be computed as √ [SE
2
 x (1 - f)], where SE is the reported standard 

error and f is the sampling fraction, e.g. 0.1 (1 in 10). 

 

Comparison of binocular data 
 

This option compares two raters' reports of binocular findings - that is, their findings 

concerning the presence of an abnormality or other "yes-no" attribute in both eyes of the 

same subjects. Account is taken of the positive correlation generally present between 

observations made in fellow eyes (Oden 1991). The procedure may also be used (with 

appropriate construal of the terms "right eye" and "left eye") in comparisons of two raters' 

observations of other paired bodily structures, or in studies where a first-eye/second-eye 

grouping is more relevant than a right/left grouping. 

 

The option requires the entry of the raters' findings in the two eyes of the same subjects, in a 

4x4 cross-tabulation showing (for each rater) the numbers of subjects with a positive finding 

in both eyes, in the right eye only, in the left eye only, and in neither eye. 

 

Kappa is computed for each eye separately, and for the pooled data on both eyes. Confidence 

intervals (90%, 95%, and 99%) are estimated for the kappa values, and (where appropriate) 
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significance tests are performed, comparing kappa with prespecified values of 0.4 and 0.6. 

The confidence intervals are appropriate if the samples are large. 

 

Modified McNemar tests (Schouten 1993) assess the difference between the raters, the 

difference between the eyes, and rater-eye interaction. 

 

Distinguishability of categories 
 

A measure of the distinguishability of pairs of categories is computed.  This may be useful in 

a methodological study in which the matched observations represent separate ratings.  The 

value is 100% if there are no disagreements, and zero if disagreements outnumber 

agreements.  An average distinguishability index is reported, as well as the distinguishability 

of each pair of categories. 

 

 

METHODS 
 
Tests for the difference between paired observations 

 
The extended McNemar (‘symmetry’) test is described by Bowker (1948), Everitt (1977: 114-115) and Zar 

(1998: formula 9.22).  There are k(k-1)/2 degrees of freedom (where k = number of categories). Corresponding 

cells that both have zero values are omitted from the calculation of this chi-square, and if there are such 

comparisons an alternative P is computed, after reducing the degrees of freedom by the number of zero-cell 

comparisons (Hoenig et al. 1995, Evans and Hoenig 1998). 

 

The contributions that a specific pair of categories (i and j) makes to a significant chi-square (P < 0.05) are 
computed by formula 6 of Maxwell (1970): 

chi-square = (nij - nji)
2
  / (nij + nji) 

where nij = the number in the cell in column i of row j 

 nji = the number in the cell in column j of row I 

In McNemar tests for single categories, the degrees of freedom are defined as k-1 (where k = number of 

categories) for testing a posteriori hypotheses (Fleiss et al. 2003: 382). 

 

The Stuart-Maxwell  chi-square test  (Stuart 1955, Maxwell 1970) is performed if there are up to 20 categories. 

It is computed by a matrix operation (Fleiss et al. 2003: 381-383; Everitt 1977: 115-116. The test is not done if 

any cell is the only non-zero cell both in its column and in its row, or in 3x3 tables that have more than  3 zero 

cells. To avoid computational problems in extreme situations, some zero divisors are replaced by 0.000001 (the 

“perturbation method” used by Dunnigan 2013). 

 

The Bhapkar test (Bhapkar 1966)  is performed if there are up to 20 categories, and is also computed by a 
matrix operation. 

 

Odds ratios and related tests 
 

If there is a zero observed frequency of pairs in any cell, adjusted odds ratios are computed, by adding 0.5 in 

each cell. 

 

The test for the consistency of odds ratios between pairs of categories, the maximum-likelihood estimation of 

mutually consistent odds ratios, and the estimation of confidence intervals are described by Pike, Casagrande 

and Smith (1975). 

 

Kappa and related results 
 

The basic formulae are provided by Fleiss et al. (2003: chapter 18).  Kappa for single categories and for the 
total distribution (overall kappa) are calculated by formulae 18.10 to 18.12.  For tests of the null hypothesis that 
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kappa is zero (formulae 18.14 and 18.35), the standard error (for an underlying zero value of kappa) is 
calculated by formula 18.13.   For tests of the hypothesis that kappa has an underlying value other than zero, 

and for confidence intervals, the standard error appropriate for non-zero values is calculated by formulae 18.15 

to 18.18.  Confidence intervals are estimated from the standard error (if the upper confidence limit exceeds 1, it 

is reduced to 1). 

 

The maximum attainable value of kappa is computed by calculating kappa when taking the marginal totals as 

fixed but modifying the body of the table so as to represent the maximum possible agreement,  by using, for 

each cell indicating agreement, the smaller of the two relevant marginal frequencies.  

Bias is appraised by the extended McNemar (symmetry) test (see above).  BAK (bias-adjusted kappa) and 

PABAK (prevalence-adjusted bias-adjusted kappa) use the methods described by Byrt et al. (1993). 

 
In the combined analysis of several samples or strata, the estimate of the supposed common or overall value of 

kappa is calculated in two ways: by computing a weighted mean, using the inverse of the variance of each 

kappa as its weight (Fleiss et al. 2003: formula 1.21); and by computing a weighted mean, using the size of the 

stratum as the weight.  The confidence intervals of the common kappa are estimated by formula 18.23 of Fleiss 

et al. (2003). 

 

The heterogeneity test is based on formula 18.22 of Fleiss et al. (2003).  The measures of heterogeneity 

(Higgins and Thompson 2002) are H and I-squared.  H is computed by Higgins and Thompson's formula 6, and 

increased to 1 (indicating absence of heterogeneity) if it less than 1.  A test-based interval is computed by 

Method III.  I-squared and its 95% interval are computed from H, using formula 10. 

 

The significance of the percentage agreement  is tested by a binomial test comparing the total number of 
complete agreements with the number expected by chance (Sheskin 2007: 729-730). 

 

Some computations are omitted if division by zero or other problems are encountered.  In some instances, zero 

values are changed to 0.00001 to permit computation.   

 
Other chance-corrected measures of association 
 
Gwet's AC1 is calculated by formula 4.1 of Gwet (2010: 61), and its variance by formula 5.7 of Gwet  (2010: 

94). The program calculates AC1's standard error on the assumption that the subjects are a random sample of an 

infinitely large population. If the sample is drawn from a defined target population and the sampling fraction is 

known, the correct standard error can be computed as √ [SE
2
 x (1 - f)], where SE is the reported standard 

error and f is the sampling fraction, e.g. 0.1 (1 in 10). 

 

Brennan and  Prediger's G-index is calculated by formula 2.18 of Gwet (2010: 38). and its variance by formula 

5.10 of Gwet (2010: 95). The program calculates the G-index's standard error on the assumption that the 

subjects are a random sample of an infinitely large population. If the sample is drawn from a defined target 

population and the sampling fraction is known, the correct standard error can be computed as  

√ [SE
2
 x (1 - f)], where SE is the reported standard error and f is the sampling fraction, e.g. 0.1 (1 in 10). 

 

Scott's pi coefficient is calculated by formula 2.6 of Gwet (2010: 21). 

 

Comparison of binocular data      
 
Single-eye kappa estimates and their standard errors are computed by the methods described by Fleiss et al. 
(2003: chapter 18).  Kappa is calculated by formula 18.12.   For tests of the study hypotheses that kappa 

exceeds 0.4 or 0.6 (formula 13.19),  and for confidence intervals (formula 18.20), the standard error appropriate 

for non-zero values is calculated by formula 18.15 . 

  

The pooled kappa estimate is computed from a 2x2 table containing the sums of the single-eye observed 

frequencies, and the sums of the single-eye expected frequencies (Schouten 1993, Table IIIc), using formula 

18.12 of Fleiss (2003). As pointed out by Schouten, this kappa is identical to the weighted kappa computed 

from the original 4x4 cross-tabulation (Table I), using weights of 1 for complete agreement on both eyes, 0.5 

for agreement on only one eye, and 0 for disagreement on both eyes. The large-sample nonzero standard error is 

computed from this 4x4 table, using the method described by Fleiss et al. (1969) for weighted kappa (formulae 

15 to 21), with the above weights.  This standard error is used for tests of the study hypotheses that kappa 

exceeds 0.4 or 0.6 (Fleiss et al. 2003, formula 18.19),  and for estimating confidence intervals (formula 18.20). 
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The modified McNemar tests use the formula 

chi-square = (|M|  - 0.25)2  /  B 

where M and B are computed from the original 4x4 table by the method described by Schouten (1993: 2212 and 

2213). For the comparison of raters, M is derived from the weights in Schouten's Table IVc, and B from the 

squares of these weights. For the comparison of eyes, M is derived from the weights in Table V, and B from the 

squares of these weights. For the test of rater-eye interaction, M is derived from the weights in Table VI, and B 

from the squares of these weights.           

 
Distinguishability of categories 
 
This measure is computed by the method described by Darroch and McLeod (1986), using maximum-likelihood 

estimates (without assuming quasi-symmetry) in formula 21b (Shoukri  2000). 
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C.  PAIRED OBSERVATIONS:  

THREE OR MORE ORDERED CATEGORIES 
 

This module is appropriate for the analysis of paired observations (in different subjects or the 

same subject) where the dependent variable has three or more categories that fall into a 

sequence.  It appraises differences and agreement between the two sets of observations.  It 

can be used to analyse matched-control trials and case-control studies, before-after studies, 

and other comparisons of paired subjects or observations, such as comparisons of husbands 

and wives, and diagnoses of the same individuals by two different  observers or diagnostic 

techniques. 

 

The number of categories must be entered, and then the numbers of pairs with each 

combination of findings are entered in a k x k table in which the paired sets of observations 

are arbitrarily designated A and B.  The categories must be entered in the correct sequence; if 

there is a reference category it should be given the highest number.  Numbers of pairs are 

entered, not numbers of observations.  Scores of 1, 2, 3, etc. are allotted to the categories (for 

use in computing a weighted kappa), but these default scores can optionally be changed to 

numbers that are believed to better express the relative closeness of the categories. 

 

If the data are stratified, enter each stratum in turn;  for meta-analyses, enter each study as a 

separate stratum.  Click on “All strata” whenever combined results are required.   

 

For each table, the program provides tests for the difference between the two sets of 

observation , including tests appropriate for ordered categories (Mann-Whitney test, Fleiss-

Everitt test, Wilcoxon signed-rank test, permutation test, and a McNemar test of overall bias 

or directional change) and tests that ignore the sequence of the categories (extended 

McNemar test, and Bhapkar  tests), and computes odds ratios and related tests, kappa and 

related results, Gwet's AC2 coefficient, other measures of agreement (Brennan and 

Prediger's G-index and Scott's Pi coefficient).a measure of the distinguishability of 

categories, and rank correlation coefficients and other measures of ordinal association. 

For stratified data, the program provides overall tests for the difference, a heterogeneity 

test, a generalized odds ratio, and kappa and related results. 

 

 
Tests for the difference between paired observations 
 

The Mann-Whitney test, Fleiss-Everitt test for three ordered categories, Wilcoxon signed-

rank test, and permutation test take account of the sequence of the categories, whereas the 

extended McNemar test and the Stuart-Maxwell and Bhapkar tests ignore their sequence. 

 

The Mann-Whitney test for paired data (Agresti 1984: 208-209) is a large-sample test that 

compares the frequencies in two sets of paired observations; if the data are arranged in the 

format of a square contingency table these are the marginal distributions.  A two-tailed 

P-value is shown, labelled as “approximate” if there are under 50 pairs of observations. If 

stratified data are entered, the test is also done on the combined data, after weighting the test 
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statistics in the strata in three different ways – equally, by the sample sizes in the strata, and 

by the square roots of the sample sizes – as well as a simple test on the pooled data. 

 

The Fleiss-Everitt test, which is done if there are three categories, tests whether in one set of 

observations there tend to be more values at one end of the scale and fewer at the other, 

compared with the other set of observations (Fleiss et al. 2003: 382-384).  If stratified data 

are entered, the test is also done on the combined (pooled) data. 

 

The Wilcoxon signed-ranks test (Siegel and Castellan 1988: 87-95) tests whether the median 

discrepancy between paired observations is zero.  It is done only if the differences between 

each pair of adjacent categories can be assumed to be equal, that is, if the scores allotted to 

adjacent categories are equally spaced.  The test is appropriate if the differences between 

paired observations are an acceptable basis for ranking the differences in the characteristic 

that is measured.   

 

The permutation test for matched pairs (Siegel and Castellan 1988: 95-100 is appropriate for 

interval-scale variables, and is therefore done only if the scores allotted to adjacent categories 

are equally spaced.  It is not done if there are more than 20 pairs. The test provides exact P-

values; one-tailed P-values are displayed if P < .05; the one-tailed value is doubled to provide 

a two-tailed value. 

 

The McNemar test of overall bias or directional change examines the paired observations, to 

test whether the values in one set of observations tend to be significantly higher than those in 

the other set. This may be useful when (for example) comparing two methods of study, or 

determining whether there was a change in values after some treatment. 

 

The extended McNemar (“symmetry”) test (Bowker's test for off-diagonal symmetry) tests 

the symmetry of the findings; e.g. for categories 1 and 2 (and similarly for each other pair of 

categories) it tests whether the probability that the observation will be in category 1 in one set 

of observations and in category 2 in the second is the same as the probability of the reverse 

combination, namely category 2 in the first set and category 1 in the second.  Ordinary 

(Pearson's) and log-likelihood chi-squares are computed.  The test is equivalent to the test for 

goodness of fit with a symmetry model described by Agresti (1984: 202).   If stratified data 

are entered, the test is also done on the combined (pooled) data. Comparisons of zero cells do 

not contribute to the chi-square. If there are comparisons of zero cells, alternative P values 

are shown, based on different degrees of freedom, namely the total number of pairs compared 

(Bowker 1948)  and this total number reduced by the number of zero-cell comparisons 

(Hoenig et al. 1995, Evans and Hoenig 1998). 

 

As a guide to the sources of disagreement (Maxwell 1970), the contribution that each pair of 

categories makes to a significant McNemar chi-square (P < 0.05) is reported (if there are up 

to seven categories). 

 

The Stuart-Maxwell and Bhapkar tests for marginal heterogeneity (Stuart 1955, Maxwell 

1970, Bhapkar 1966) test the hypothesis that the probabilities of the various categories are 

the same in the two sets of observations (are the totals of the columns the same as the totals 

of the rows?)  The Bhapkar test is more powerful than the Stuart-Maxwell test if the sample 

is small; for larger samples the two tests are essentially equivalent (Dunnigan 2013). For 

certain sets of data, these tests are impractical (Dunnigan 2013), and are omitted. The 
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specific categories that manifest significant differences can be pin-pointed (see “Odds ratios 

and related tests”, below). 

 

The results of the extended McNemar and Stuart-Maxwell or Bhapkar tests cannot be 

expected to be the same, except that symmetry implies marginal homogeneity (but not vice 

versa).  

 

Heterogeneity test 
 
If stratified data are entered, goodness of fit with a symmetry model is tested twice, once 

using the pooled data, and once using the sum of the goodness-of-fit chi-squares in the 

separate strata. The difference between the two goodness-of-fit chi-squares is an indication of 

the effect of the stratifier variable(s), and is displayed as a heterogeneity test.  The result 

should be interpreted with caution, since test has a low power.  The symmetry model is based 

on the assumption that the probability of discrepant pairs in which the case is in category 1 

and the control in category 2 is the same as the probability of pairs in which the case is in 

category 2 and the control in category 1 (and similarly for other pairs of categories); i.e. the 

odds ratio (as generally computed for paired data) is 1 (Agresti 1984: 202). 

 

The heterogeneity of kappa values is also tested (see below). 

 

Odds ratios and related tests 
 
The generalized odds ratio or GOR (the odds ratio for ordinal data) is displayed.  This is the 

odds in favour of a higher score in one sample than in the other, i.e. the ratio of pairs with a 

higher score in one sample to pairs with a higher score in the other sample.  It is assumed that 

this odds ratio is the same for each pair of categories (Agresti 1984: 203).  The ratios in both 

directions are displayed, with their 90%, 95% and 99% confidence intervals.  If stratified 

data are entered,  the assumed common values of the GOR are displayed (with their 96% 

confidence intervals); these are weighted averages of the stratum-specific GOR values, and 

are of questionable value is there is marked heterogeneity. 

 

The program provides odds ratios based on the contrast between each pair of categories (if 

there are up to 10 categories).  If the odds ratio based on the contrast between two categories, 

e.g. 1 and 2 (displayed as “1:2”) is above 1, this means that the odds in favour of 1 rather 

than 2 are higher in sample A than in sample B.    

 

The consistency of these odds ratios based on pairs of categories is tested.  For example, if 

the odds ratio for category 1 versus category 2 is 3.0 and the odds ratio for category 2 versus 

category 3 is 4.0, the odds ratio for category 1 versus category 3 would be expected to be 

12.0.  Inconsistency with such expectations suggests that the odds ratios may be modified by 

the matching variables (Pike, Casagrande, and Smith 1975).  A low P value is indicative of  

inconsistency. 

 

Maximum-likelihood estimates of mutually consistent odds ratios based on the contrast 

between each pair of categories  are computed; these estimates are not very meaningful if the 

test points to mutual inconsistency. 
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The program also computes odds ratios based on a comparison of each category with all 

other categories combined, and does McNemar tests to appraise their significance; alternative 

P-values are provided for tests of hypotheses formulated before and after seeing the results. 

 

Confidence intervals are displayed for odds ratios contrasting each category with the 

reference category (the category with the highest category number), assuming mutual 

consistency. 

 

Kappa and related results 
 

As measures of the agreement between the matched observations, the program provides two 

weighted kappa estimates (which take account of the sequence of the  categories), an 

ordinary overall kappa (for the complete set of categories, but ignoring the sequence), and (if 

there are up to six categories)  separate kappa values for each category.  In each instance, a 

one-tailed test is done, indicating whether kappa is significantly higher than zero. If kappa is 

0.4 or more, a second test is done, indicating whether it is significantly higher than 0.4; and if 

it is 0.6 or more, a third test is done, indicating whether it is significantly higher than 0.6.  

Confidence intervals are estimated from the standard error. Flight and Julious (2014) 

emphasize that because of "the disagreeable behaviour of the kappa statistic", it should 

always be interpreted in conjunction with the percentage agreement, prevalence-adjusted 

bias-adjusted kappa, prevalence index, bias index and maximum attainable kappa (see 

below). 

 

In the computation of weighted kappa, the weight given each pair of observations depends on 

the size of the difference between the categories in which the pair-mates fall.  Default scores 

of 1, 2, 3, etc. are allotted to the categories for this purpose;  but these scores can optionally 

be changed to numbers that are believed to better express the relative closeness of the 

categories. Two weighting schemes are used – linear and quadratic (Sim and Wright 2005). 

Either may be chosen; but since the results differ, study reports should specify the method 

used. The linear weights are proportional to the size of the difference between scores, 

whereas the quadratic weights are proportional to the square of the difference. If there are 4 

categories, the linear weight is 0.67 if the difference between scores is 1, 0.33 if it is 2, and 0 

if it is 3. Quadratically-weighted kappa values tend to increase with the number of categories, 

whereas linearly-weighted values are less sensitive (Brenner and Kliebsch 1996). 

 

Paradoxical values of kappa may occur because of bias (systematic one-sided variation 

between two ratings) – indicated by the extended McNemar test (see above) – or a skewed 

distribution (inequality between the prevalences of the categories in the two samples).  An 

adjusted value of the overall kappa –PABAK (prevalence-adjusted bias-adjusted kappa) – is 

therefore computed (Byrt et al. 1993).  This adjusted value is conditional on the observed 

percentage agreement.  BAK is the value that kappa would take if there were no systematic 

one-sided variation between the ratings; it is equivalent to Scott's pi coefficient of agreement 

(Scott 1955).  Low kappa values are likely to be affected by such bias.  PABAK is the value 

that kappa would take if there were no systematic one-sided variation between the ratings 

and, in addition, the prevalence of each category (as expressed by the mean of the two raters' 

totals for the category) was equal.  PABAK may be useful in appraising agreement when the 

percentage agreement is high and kappa is paradoxically low; it approximates to the highest 

possible kappa if the percentage agreement is above about 50% (Lantz and Nebenzahl 1996).  

PABAK is called kappa-nor by Lantz and Nebenzahl (1996), and is equivalent to Maxwell's 

RE (random error) coefficient of agreement (Maxwell 1977) and Bennett's S coefficient 
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(Bennett et al. 1954).  It should be noted that simulation studies have suggested that PABAK 

may substantially overestimate agreement (Hoehler 2000).  

 

The program also displays the maximum attainable overall kappa consistent with the 

marginal totals, i.e. consistent with the observed level of bias. 

 

Kappa is generally used to measure the agreement between two ratings (by different 

observers or tests, or by the same observer on different occasions) of the same individuals.  

In addition to this use as  a measure of reliability, it may be used to measure concordance in 

other situations where paired samples are compared (Fleiss et al. 2003: 617-618).  In a 

matched case-control study or matched-control trial, kappa may serve as an indication of the 

effectiveness of a matching procedure – it indicates the extent to which the findings in 

matched pairs are more similar than findings in individuals from different pairs (Fleiss et al. 

2003: 617-618).   

 

Kappa, like other measures of agreement, reflects the agreement concerning specific subjects 

by specific raters, and can be generalized to a broader group only if the subjects are 

representative of the broader group. As a measure of inter-rater reliability, its value depends 

on the choice of raters. Uses and misuses of kappa in epidemiology are discussed by (among 

others) Sim and Wright (2005), MacLure and Willett (1987), Thompson and Walter (1988a, 

1988b), Kraemer and Bloch (1988), Bloch and Kraemer (1989) and Gwet (2010). 

 

The probability of chance agreement is taken into account in the calculation of kappa.  A 

value of 1 indicates perfect agreement  (after allowing for this probability of chance 

agreement) between ratings; 0 indicates no agreement other than what can be attributed to 

chance, and a negative value indicates less than chance agreement.  Fleiss et al. (2003) 

suggest that a value of 0.75 or more indicates excellent agreement, and 0.40 or less indicates 

poor agreement. Cicchetti and Sparrow (1981) divide Fleiss’s 0.40–0.74 group into 0.60–

0.74: good; and 0.40–0.59: fair. Alternative guidelines are: over 0.80, very good agreement; 

0.61–0.80, good; 0.41–0.60, moderate; 0.21–0.40, fair; and 0.20 or less, poor agreement 

(Landis and Koch 1977, Altman 1991).  These levels may be taken into account in the 

appraisal of confidence intervals, e.g. by seeing whether the lower confidence limit lies 

above 0.40 (Basu and Basu 1995). 

 

The percentage agreement is also shown.  This is the percentage of individuals who are 

placed in the same category by both ratings, and (unlike kappa) it is not corrected for chance 

agreement.  In a study in which the same individuals are rated by two observers, this is the 

percentage of subjects who are placed in the same category by both raters).  Its significance 

is tested, using a one-sided test of the null hypothesis that agreement  is not more than might 

be expected by chance. The percentage agreement is also shown separately for each category 

(if there are up to six categories), together with the percentage of positive agreement and the 

percentage of negative agreement. The percentage of positive agreement is the percentage of 

“yes” ratings (for a specific category) that are paralleled by a “yes” rating by the other 

observer or test, among all “yes” ratings for that category;  and the percentage of negative 

agreement is the percentage of “no” ratings (for a specific category) that are paralleled by a 

“no” rating by the other observer or test, among all “no” ratings for that category.  In clinical 

practice, the percentage of agreement for a specific rating represents the probability that, if a 

subject has been given that rating by a typical observer, another typical observer will concur. 
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If stratified data are entered (e.g. observations of individuals in different age groups), the 

heterogeneity of the overall kappa values in the different strata is tested, measures of 

heterogeneity (see above) are provided, and two estimates of the overall kappa are computed, 

with their confidence intervals.  The first estimate of the overall kappa is precision-based; it 

is produced by weighting each kappa by the inverse of its variance (Fleiss et al. 2003: 602).  

The second estimate is obtained by weighting the kappa values by the sizes of the samples in 

the strata.  A simulation study suggests that this is preferable to the precision-based method if 

kappa is not zero (Barlow et al. 1991).   A heterogeneity test is done, and supplemented by  

two measures of heterogeneity, H and I-squared (Higgins and Thompson 2002), with their 

approximate 95% intervals.  An H value of less than 1.2 suggests absence of noteworthy  

heterogeneity, whereas a value exceeding 1.5 suggests its presence, even if the heterogeneity 

test is not significant.  I-squared expresses the proportion of variation that can be attributed 

to heterogeneity (in a meta-analysis, to interstudy variation) rather than to sampling error; a 

value greater than 50% may be considered substantial heterogeneity (Higgins and Green 

2006).  Overall values of the percentage agreement are reported.  These are based on the 

pooled data; this is equivalent to weighting the stratum-specific values by sample sizes. 

 

Gwet's AC2 

 

The AC2 statistic is, like weighted kappa, a chance-corrected measure of the extent of 

agreement between raters concerning an ordered set of response categories (Gwet 2010: 76-

78, 80-81).  It is a weighted version of the AC1 statistic, treating various kinds of 

disagreement as partial agreements. The program assumes that the successive categories are 

equally spaced, with scores of 1, 2,3 etc. A quadratic weight is assigned to each pair of 

scores, reflecting the degree of agreement.  Its main difference from kappa is that it bases the 

probability of agreement-by-chance on only the (estimated) hard-to-classify subjects using a 

model that estimates their number. 

 

Distinguishability of categories 
 

A measure of the distinguishability of pairs of categories is computed.  This may be useful in 

a methodological study in which the matched observations represent separate ratings.  The 

value is 100% if there are no disagreements, and zero if disagreements outnumber 

agreements. An average distinguishability index is reported, as well as the distinguishability 

of each pair of categories. 

 

Rank correlation coefficients and other measures of ordinal association 
 
Kendall's and Spearman's rank correlation coefficients (tau b and rho, respectively) are 

computed (with their standard errors and 95% confidence intervals).  These have different 

numerical values but are similar in their ability to detect associations (Siegel and Castellan 

1988: 251).  The other measures of ordinal association that are provided are Goodman and 

Kruskal's gamma and Somers' asymmetric D, which may be regarded as measures of how 

effectively the order of a pair of observations with respect to one observation can be 

predicted from their order with respect to the other observation (see Hildebrand, Laing, and 

Rosenthal 1977).  The Somers’ D statistics are appropriate when one of the observations is 

clearly the dependent one, e.g. one that comes later in time; Somers' Dxy is appropriate when 

A is dependent, and Dyx when B is dependent. 
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Tau, Kruskal's gamma, and Somers' D depend on a comparison of the ranks of the paired 

observations.  All possible pairs are taken into account in the computation of tau, whereas 

pairs that tie are disregarded in the calculation of gamma, and pairs that tie with respect to 

one (the independent) observation are omitted from the computation of Somers' D.  Tau is the 

geometric average of Dxy and Dyx. 

 
 
 
 

METHODS 
 

Maximum categories = 60  [50 for kappa]. 

 

Tests for the difference between paired observations 
 
The Mann-Whitney test for paired data is described by Agresti (1984:  208-209).  If stratified data are entered, 

the results of the tests in the strata are combined by Stouffer's method (Stouffer et al. 1949: 5; DeMets 1987), 

based on weighted averages of the test results in the strata, using three different sets of weights for the Z values 

–weighting  them equally, by the sample sizes in the strata, and by the square roots of the sample sizes.  A 

simple test is also done on the combined (pooled) data. 

 

The Fleiss-Everitt test for ordered categories is described by Fleiss et al. (2003: 382-384). 
 

The Wilcoxon signed-ranks test uses the formula provided by Siegel and Castellan (1988: 92, formula 5.5), but 

allowing for the effect of ties on the variance by replacing the denominator (as suggested by Sprent 1993: 53 

and Mehta and Patel 1991: 7-10) by √∑(Ri / 4), where Ri = the rank of the difference between paired 

observations.  Nondiscrepant pairs are ignored.  If there are fewer than 20 pairs, significance is appraised by 

using critical levels for one-tailed P = .05, .025, .01, .005, .0025, and .0005 (derived from Siegel and Castellan 

1988: Table H; and Zar 1998: Table B.12). 

 

The permutation test is explained by Siegel and Castellan (1988: 95-100). 

 

The McNemar test of overall bias or directional change compares a and b, where a is the total number of pairs 

on one side of the main diagonal of the cross-tabulation [i.e. the line connecting cells with equal values for both 

tests), and b is the total number on the other side of the diagonal. Chi-square (with one degree of freedom) is 

then calculated as (a - b)
2 
 / ( a + b) or (with a continuity correction) as (|a - b| - 1)2  / ( a + b). One-tailed and 

two-tailed P values are reported. 

 

The extended McNemar test is described by Bowker (1948), Everitt (1977: 114-115) and Zar (1998: formula 

9.22).  There are k(k-1)/2 degrees of freedom (where k = number of categories). Corresponding cells that both 

have zero values are omitted from the calculation of this chi-square, and if there are such comparisons an 

alternative P is computed, after reducing the degrees of freedom by the number of zero-cell comparisons 

(Hoenig et al. 1995, Evans and Hoenig 1998). 

The contributions that specific pairs of categories make to a significant chi-square (P < 0.05) are computed by 

formula 6 of Maxwell (1970): 

chi-square = (nij - nji)
2
  / (nij + nji) 

where nij = the number in the cell in column i of row j 

 nji = the number in the cell in column j of row i 

In McNemar tests for single categories, the degrees of freedom are defined as k-1 (where k = number of 

categories) for testing a posteriori hypotheses (Fleiss et al. 2003: 382).   

 
The Stuart -Maxwell chi-square test  (Stuart 1955, Maxwell 1970) is performed if there are up to 20 categories. 

It is computed by a matrix operation (Fleiss et al. 2003: 381-383; Everitt 1977: 115-116. The test is not done if 

any cell is the only non-zero cell both in its column and in its row, , or in 3x3 tables that have more than  3 zero 

cells unless there are only 3 categories, in which case the category with perfect agreement is  omitted from the 

calculation of chi-square and, as suggested by Uebersax (2006), P is based both on 1 degree of freedom and (for 
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a more conservative test) on 2 degrees of freedom. To avoid computational problems in extreme situations, 

some zero divisors are replaced by 0.000001. 

 

The Bhapkar test (BhapkaR 1966)  is performed if there are up to 20 categories, and is also computed by a 

matrix operation. 

 
Heterogeneity test 
 
The tests for goodness of fit with a symmetry model, on which the heterogeneity test is based, are described by  

Agresti (1984: 202). 
 

Odds ratios and related tests 
 
The generalized odds ratio, which is Agresti's α΄ (Agresti 1980), is computed by the formula provided by Lui 

(2004: 126), and its 95% confidence interval by the logarithmic-transformation method of formula 6.14 (Lui 

2004: 127).  For stratified data, the assumed common value of the GOR is the exponent of a weighted average 

of the logs of the GOR values in the strata, and its 95% confidence interval is computed from the estimated 

variance of this weighted average (Agresti 1980: 63). 

 

If there is a zero observed frequency of pairs in any cell, 0.5 is added in each cell. 

 
The test for the consistency of odds ratios between pairs of categories, the maximum-likelihood estimation of 

mutually consistent odds ratios, and the estimation of confidence intervals are described by Pike, Casagrande 

and Smith (1975). 

 

Kappa and related results 
 

The basic formulae are provided by Fleiss et al. (2003: chapter 18).  Kappa for single categories and for the 

total distribution (overall kappa)  are calculated by formulae 18.10 to 18.12, and weighted kappa by formulae 

18.27 to 18.29, using linear or quadratic weights. Linear weights are calculated by a formula (18.31) suggested 

by Cicchetti and Allison (1971), namely (for each cell), 

         1 - |i – j| / (k – 1) 
where i and j are the scores of the row and column categories 

          k is the number of categories. 

The formula for quadratic weights (18.30) is 

           1 - |i – j|
2
 / (k – 1)

2
  

For tests of the null hypothesis that kappa is zero (formulae 18.14 and 18.35), the standard error (for an 

underlying zero value of kappa) is calculated by formula 18.13.   For tests of the hypothesis that kappa has an 

underlying value other than zero, and for confidence intervals, the standard error appropriate for non-zero 

values is calculated by formulae 18.15 to 18.18.  Confidence intervals are estimated from the standard error (if 

the upper confidence limit exceeds 1, it is reduced to 1). 

 
The maximum attainable value of kappa is computed by calculating kappa when taking the marginal totals as 

fixed but modifying the body of the table so as to represent the maximum possible agreement,  by using, for 

each cell indicating agreement, the smaller of the two relevant marginal frequencies.  

 
Bias is appraised by the extended McNemar (symmetry) test (see above), and   BAK (bias-adjusted kappa) and 

PABAK (prevalence-adjusted bias-adjusted kappa) by the methods described by Byrt et al. (1993). 

 

In the combined analysis of several samples or strata, the estimate of the supposed common or overall value of 

kappa is calculated in two ways: by computing a weighted mean, using the inverse of the variance of each 

kappa as its weight (Fleiss et al. 2003: formula 18.21); and by computing a weighted mean, using the size of the 

stratum as the weight.  The confidence intervals of the common kappa are estimated by formula 18.23 of Fleiss 

et al. (2003) 

 

The heterogeneity test is based on formula 18.22 of Fleiss et al. (2003).  The measures of heterogeneity 

(Higgins and Thompson 2002) are H and I-squared.  H is computed by Higgins and Thompson's formula 6, and 
increased to 1 (indicating absence of heterogeneity) if it less than 1.  A test-based interval is computed by 

Method III.  I-squared and its 95% interval are computed from H, using formula 10. 
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The significance of the percentage agreement is tested by a binomial test comparing the total number of 

complete agreements with the number expected by chance (Sheskin 2007: 729-730). 

 

Some computations are omitted if division by zero or other problems are encountered.  In some instances, zero 

values are changed to 0.00001 to permit computation.      

 
Gwet’s AC2 

 

Gwet's AC2 is calculated by formula 4.17 of Gwet (2010: 77).             

 

Distinguishability of categories 
 
This measure is computed by the method described by Darroch and McLeod (1986), using maximum-likelihood 

estimates (without assuming quasi-symmetry) in formula 21b (Shoukri  2000). 

  

Rank correlation coefficients and  other measures of ordinal association 
 

The computation of tau, gamma, and Somers' D is based on S, the difference between the numbers of 
concordant and discordant pairs, as explained by Kendall (1970: 45-46) and Agresti (1984: 157-159).   

 

The formula for tau makes allowance for tied observations (Siegel and Castellan 1988: 249, formula 9.10).  If 

the number of pairs N > 30, the significance of S is tested by a large-sample method whose use Agresti (1984: 

180) suggests if the numbers of concordant and discordant pairs both exceed 100.  If this condition is not met 

the program reports P as approximate.  The formula is 

Z = (S - CC) / √V   
where    V = variance of  S, making allowance for tied ranks (Kendall 1970: formula 4.3) 

As recommended by Kendall (1970:54-58), CC = 1 unless one variable has only two values and the other has 

tied ranks, in which case 

CC = [(2N - TF - TL)  /  Intervals]  / 2                 
where  Intervals = the number of different ranks for the non-dichotomous variable, minus one 

TF and TL = ties involving the first and last ranks (respectively) of the non-dichotomous variable 

 

Gamma is calculated by a formula provided by Siegel and Castellan (1988: 292, formula 9.32).  If N > 30, the 

significance test for S (see above) is used as a test for gamma. 

 

Somers' Dxy and Dyx are calculated by Siegel and Castellan's formulas 9.41 and 9.42 (1988: 304-305).  

Significance is tested by a Z test (Siegel and Castellan 1988: 309, formula 9.47), based on the variance 

computed by Siegel and Castellan's formula 9.45. 

 

Spearman's rho is computed by a formula that takes account of tied ranks (Siegel and Castellan 1988: 241, 

formula 9.7).  It is not calculated if numbers are too large for the program to handle.  A large-sample 

approximation is displayed as the S.E. of rho, namely √[1 / (N – 1)] (Hollander and Wolfe 1999, formula 

8.72). The t-test for the significance of rho (Siegel and Castellan 1988: 243, footnote), used if N > 30, is based 

on the null variance.  An approximate 95% confidence interval (Zar 1996: 398) is estimated if N is 10 or more 

and rho is 0.9 or less, based on the Fisher z transformation 

  z = 0.5ln[(1 + rho)  / (1 - rho)]    
The confidence limits for rho {Fieller, Hartley and Pearson (1957, 1961) are  

exp[2(z ± 1.96SEz) - 1] / exp[2(z - 1.96SEz) + 1] 
where  SEz = √[1.06 / (N - 3)]. 
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D1.  PAIRED NUMERICAL OBSERVATIONS 

 (NORMAL DISTRIBUTION) 
 

This module is appropriate for the analysis of paired numerical observations (in different 

subjects or the same subject) where a normal distribution is assumed.  It appraises differences 

and agreement between the two sets of observations   It can be used to analyse matched-

control trials and case-control studies, before-after studies, reliability studies, comparisons of 

measurement methods, and other comparisons of paired subjects or observations. An option 

is offered for deriving confidence intervals for the difference between means from the P-

value, for use in meta-analyses of incompletely reported studies. 

 

The observations entered may be measurements in paired subjects, e.g. matched cases and 

controls, or repeated measurements in the same subjects.  Each pair of matched observations 

(labelled "A" and "B")  can be entered in a separate line, or pairs with the same values can be 

entered together, with their frequency; up to 500 lines may be entered.  Replicated 

measurements can be entered in any order, unless “A” and “B” represent defined 

instruments, observers, times, conditions, etc. An option is offered for the entry of 

supplementary unpaired observations. 

 

If the data are stratified, enter each stratum in turn.  Click on “All strata” whenever 

combined results are required.  In a study of several clusters, with paired observations in 

each cluster, enter each cluster as a separate stratum, and then click on "All strata" for a 

combined analysis. 

 

In a clinical trial or cohort study that uses paired baseline and follow-up measurements to 

compare the changes in two groups, enter each group as a separate stratum and then click on 

“All strata”  for a comparison using analysis of covariance and for estimates of the number 

needed to treat. 

 

The program provides a comparison of the paired observations (including tests for 

differences, namely the Bradley-Blackwood test, Student's paired t-test, and Pitman's test), 

measures of agreement (correlation coefficient and population correlation coefficient, six 

intraclass correlation coefficients, Lin’s concordance correlation coefficient (with Lin’s 

accuracy coefficient), repeatability coefficients, the standard error of measurement, the 

within-subject coefficient of variation, the confidence interval for the “true value” 

corresponding to an observed measurement, Spearman-Brown coefficients of reliability, St 

Laurent's correlation coefficient, 95% limits of agreement , and  the association between the 

absolute difference and the mean value), a measure of disagreement, partial omega-

squared, predictors and odds of replication, and ANOVA tables. Measures of the 

similarity or dissimilarity of the distributions (PSR and ABC) are provided. Optionally, 

equivalence tests can be performed. 

 

If stratified data are entered, the paired one-tailed t tests in the separate strata are combined, 

and the heterogeneity of the P-values in the strata is tested. 
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Comparison of the paired observations 
 
The program displays means, standard deviations and standard errors for the two sets of 

observations, and the mean difference between the observations, with its standard deviation, 

standard error and 90%, 95% and 99% confidence intervals.  It also provides linear 

regression coefficients, with their standard errors. 
 

The tests for differences are the Bradley-Blackwood test, which simultaneously tests the 

means and variances (Bradley and Blackwood 1989; Bartko 1994), Student's paired t-test, 

which compares the means, and Pitman's test (Pitman 1939) for the equality of variances.  

Two-tailed P-values are displayed. 

 

Since the paired t test is based on the assumption that the differences are normally distributed 

(Zar 1998: 1634, Armitage et al . 2002:  103)  four tests for normality are performed - the 

Lilliefors test, the D'Agostino-Pearson test, the Shapiro-Wilk W test (Shapiro and Wilk 1965, 

1968), and the Shapiro-Francia W' test (Shapiro and Francia 1972) 

. 

The Lilliefors test (Lilliefors 1967) examines the deviation of the cumulative frequency from 

the standard normal cumulative distribution; the result is reported as P <0.01 or P < 0.05 or 

P<0.10 or P<0.15, >.0.1  or  P<0.2, >0.15; or P>0.2.   The D'Agostino-Pearson test 

(D'Agostino and Pearson 1973, which is based on tests for skewness and kurtosis, is not 

performed if fewer than 50 pairs are entered. It. is a method of choice if there are 50 or more 

observations (D’Agostino et al.1990). The Shapiro-Wilk W test is based on the correlation 

between the ordered values and some constants that would be closely correlated in a sample 

from a normal population. It is "arguably the best omnibus test" (Royston 1993), although it 

is affected by tied data. It is performed if there are between 7 and 50 observations. The 

Shapiro-Francia W' is based on the correlation between the ordered observations and the 

expected standard normal order statistics. It has about the same overall power as the Shapiro-

Wilks W test. It is affected by tied data. 

 

If stratified data are entered, the paired one-tailed t tests in the separate strata are combined 

by Stouffer’s method (Stouffer et al. 1949, p. 45; DeMets 1987) to produce overall one-tailed 

tests that control for the stratifying variables.  Three different sets of weights  are used for 

this purpose – weighting  the test results equally, by the sample sizes in the strata, and by the 

square roots of the sample sizes.  In addition, the heterogeneity of the P-values in the strata is 

tested. 

 

Measures of agreement 
 

The measures of agreement have special relevance to studies of reliability, comparisons of 

measurement methods, and the clinical application of measurements. 

 

A simple correlation coefficient between the variables,  intraclass correlation coefficients, 

and Lin’s concordance correlation coefficient are computed in all instances.  Four correlation 

coefficients between the variables (A and B) in the 2x2 table are computed: the phi 

coefficient, which is the usual (Pearson) coefficient, applied to binary variables, and is 

appropriate if both variables are natural dichotomies based on qualitative characteristics (e.g 

cases and controls, or exposed and nonexposed); the tetrachoric correlation coefficient (see 

below), which is appropriate if both variables are quantitative ones that have been artificially 

dichotomized; and two point-biserial correlation coefficients, appropriate if one variable is 
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naturally dichotomous and the other is a dichotomized quantitative variable (and depending 

on which variable is naturally dichotomous). 

 

If the paired observations are positively correlated  the program also provides measures that 

may be useful if A and B are replicate measurements, or if they denote two different methods 

of measurement.  The measures for use in studies of replicate measurements are repeatability 

coefficients, the standard error of measurement, and the confidence interval for the “true 

value” corresponding to an observed measurement.  The measures that are appropriate in 

comparisons of measurement methods are St Laurent's correlation coefficient (for use if one 

of the methods is regarded as a “gold standard”), and 95% limits of agreement.  The program 

displays the correlation coefficient between the absolute difference and the mean of A and B, 

and the linear regression of the difference on the mean. 

 

The simple correlation coefficient is seldom helpful in comparisons of methods of 

measurement (Bland and Altman 1995a; Altman 1991: 401-402), since at best it points to an 

association between the measurements, and does not tell how closely they agree; moreover, 

its value  tends to be high if the subjects are very different, and low if they are similar. The 

program also reports the population correlation coefficient, the coefficient of determination  

(the square of the simple correlation coefficient), and the adjusted coefficient of 

determination (the square of the population correlation coefficient).  

 

The "true" correlation coefficient. Since correlation coefficients are attenuated if the 

measurements do not have complete reliability (Trafimow 2015), an option is offered for the 

computation of a "true" correlation coefficient that compensates for imperfect reliability. In 

effect, this is an estimate of what the coefficient would be if the measurements were 

completely reliable. As Trafimow states, this "corrected" coefficient will be further from zero 

than the obtained one, "suggesting that it might actually be more important than it otherwise 

would seem to be". He stresses the importance of a strong appreciation of the effects of the 

reliability of the measures on correlation sizes. The reliability measures required for the 

computation are the correlation coefficients between replicate measurements of each of the 

two variables;  the computation is possible only if replicate measurements are available. 

The program must be run three times - the first two times to compute correlation coefficients 

for replicate measurements of variable A and replicate measurements of variable B, and the 

third time to measure the correlation between variables A and B and "de-attenuate" it.  

The "true" coefficient is squared to provide a "true" coefficient of determination. 

 

Intraclass correlation coefficients, which are appropriate for interval-scale data with an 

assumed normal distribution, are measures of agreement that express the correlation (in terms 

of absolute agreement) between measurements within individuals or sets of matched 

individuals.  Six intraclass correlation coefficient (ICC) values are computed (Shrout and 

Fleiss 1979), with their 95% confidence intervals. 

 

Each ICC is appropriate in a different situation.  (a)  The values with the rubric “two-way 

model with fixed raters” are appropriate in studies where the matched observations in each 

set represent various “unique” raters, and no inferences are made about other raters;  “raters” 

denote the various observers, treatments, methods or conditions of observation, matched 

individuals, or (in a reliability study of a questionnaire or other scale)  questions or other 

scale items, that were studied.  Two such ICCs are provided. The first, which Shrout and 

Fleiss refer to as model 3.1, uses a single measurement as the unit of analysis, and the second 

(model 3,k) uses an average measurement.  (b) The two ICC values reported as “two-way 
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model with random raters” are appropriate if the raters were randomly selected from a larger 

population of raters and it is proposed to generalize the findings to this larger population.  If 

analysis is based on a single measurement, this is model 2,1; if it based on an average 

measurement, it is model 2,k.  (c) The third pair of ICC values, entitled “one-way random 

model”, is appropriate in methodological or other studies where the measurements are 

replications by the same observer or using the same instrument, and the order in which they 

are entered does not matter (this does not apply to the other ICC values)..  They apply to the 

use of a single measurement (model 1,1) – e.g. in studies to determine the reliability of a 

single measurement – or to an average measurement (model 1,k)  – e.g. in studies to 

determine the reliability of an average measurement. 

 

The maximum value of an ICC is 1; the lower limit is an indeterminate negative value.  As a 

rule of thumb, it has been suggested that ICC values above 0.75 should be regarded as 

evidence of excellent, and values above 0.4 as evidence of good, reliability (Shoukri and 

Pause 1999: 27).   

 

In the appraisal of replicated measurements a low ICC may express variability of the 

characteristic measured, as well as low reliability of measurement; this is especially 

important if measurements were conducted at different times.  The usefulness of the ICC in 

comparisons of two methods of measurement (Bartko 1994; Lee 1992) is constrained by 

these and other limitations (Muller and Buttner 1994; Bland and Altman 1995a). 

 

The concordance correlation coefficient is computed with its 95% confidence interval.  

Suggested by Lin (1989) as an improved measure of the reproducibility of measurements, its 

use is appropriate in comparisons where the two observers (or measurement methods) are 

selected “at random” to represent all observers (or measurement methods) to whom the  

assessed consistency relates; whereas if they are “fixed”–- e.g. in a comparison of two kinds 

of measuring instrument – it is more appropriate to use the intraclass correlation coefficient 

(Mueller and Buettner 1994).  It has been tentatively suggested that a Lin coefficient of >0.99 

indicates almost perfect agreement, 0.95-0.99 substantial agreement, 0.90-0.95 moderate 

agreement, and <0.90 poor agreement (NIWA 2009). The Fisher z transformation of the 

coefficient is displayed, with its standard error, for use if the findings are to be compared 

with those in a different set of paired observations; (for this purpose, the standard error of the 

difference between two z transformations is the square root of the sum of their variances).  

The value of any correlation coefficient, including Lin's concordance coefficient, is affected 

by the range of values included in the analysis (Lin and Chinchilli 1997) - the wider the 

range, the stronger the correlation - and this should be taken into account when coefficients 

are appraised or coefficients based on different samples are compared.  The program 

therefore reports this range (the range of the means of paired values). 

 

Lin's accuracy coefficient Xa (Lin et al 2012), also referred to as  the  bias correction factor 

Cb (Lin 1989) is also reported. Lin's CCC has two components - the correlation coefficient, 

which is a measure of precision that evaluates deviations from the best-fit line, and the 

accuracy coefficient, which  measures how far the best-fit line deviates from a 45-degree line 

through the origin. The coefficient varies from 0 to 1; the further it is from 1, the greater the 

deviation. Confidence intervals are reported. 

 

The coefficients of repeatability express the expectation (with 95% confidence) of the 

maximum size of the absolute difference between paired observations.  Two coefficients are 

provided, with their approximate confidence intervals.  The first (Bland and Altman 1986; 
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Chinn 1990) is valid if there is no bias (no systematic difference between the observations), 

i.e. if the mean difference between observations is zero; this may not be so if the 

measurement process alters the quantity or if knowledge of the first measurement affects the 

second.  The second coefficient controls for any effect of bias; it is based on the residual 

within-subjects sum-of-squares, after removal of the between-ratings component. 

 

The standard error of measurement (Fleiss 1986: 11) –.also called the “technical error” 

(Kahn and Sempos 1989: 239-242) or “the SE of an obtained score” (Guilford and Fruchter 

1986: 413) – is an index of reliability that expresses variation between observers and other 

causes of differences between repeated observations.  To aid in its interpretation, its ratios to 

the standard deviation among persons and to the mean value are displayed. 

 

The program computes an approximate 95% confidence interval for the “true value” 

corresponding to an observed measurement or the mean of two or three measurements.  

These should be used with caution, since they assume that the width of the confidence 

interval is independent of the magnitude of the value (Guilford and Fruchter 1986: 413).  

 

The within-subject coefficient of variation is an indication of the extent to which the 

measurement error varies according to the magnitude of the measurement (Bland and Altman 

1996b).  Using this coefficient, the program provides formulae for the approximate 95% 

confidence interval for the “true value” corresponding to an observed measurement.  

 

St Laurent's gold-standard correlation coefficient is a measure of criterion validity – it is a 

measure of the agreement between a measurement and a “gold standard” (St Laurent 1998).  

Two values are displayed, with their approximate 95% confidence intervals, taking A or B in 

turn as the “gold standard”.  The procedure assumes that the “gold- standard” measurements 

and the differences between the two sets of  measurements are normally distributed. 

 

The 95% limits of agreement (Bland and Altman 1995a, 1995b, 1999; Altman 1991: 397-

400) answer the question, "given a measurement by one method, how far might this be from 

a measurement by the other method?"  These demarcate the bounds of the range that, with a 

95% probability, includes the difference between single measurements of the same subject by 

the two methods.  The 95% confidence intervals of the 95% limits of agreement are 

estimated (the limits of agreement may be very imprecise if the sample is small). The 

confidence intervals are computed by two methods - those of Bland and Altman (1986, 1999) 

and those of Donner and Zou (2010). Simulation results suggest that the latter method is 

preferable Donner and Zou 2010). 
 

Use of the 95% limits of agreement assumes that the differences are reasonably constant 

throughout the range of measurement.  To check this assumption, the program displays the 

coefficient of correlation between the absolute difference and the mean of the two values, 

and the regression of the difference on the mean.  The correlation and regression coefficients 

may be expected to be zero if the mean difference and the scatter of differences do not 

change with increasing values.   If the difference and the mean are correlated, it may be 

appropriate to repeat the computation after log-transformation of the measurements, since the 

difference between log-transformed values may not change with increasing values.  (To do 

this, click on “Repeat”, then on “Lognormal distribution assumed”, and then on “Run”.) 
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Considerable inconsistencies may occur between the limits of agreement and  the ICC in the 

interpretation of agreement, and Costa-Santos et al. (2011) suggest that these methods should 

be used in tandem. 

 

Even when one of the methods of measurement is a new one and the other is an accepted 

standard, it is preferable to examine the relationship between the difference and the mean 

value rather than the relationship between the difference and the standard measurement, 

which (as shown by Bland and Altman 1995b) is likely to be misleading. 

 

Spearman-Brown coefficients of reliability provide estimates of the effect of using the means 

of replicated observations.  They predict what the reliability would be if two, three, four, or 

five replications were averaged. 

 

Clustered data 
 
In order to effectively remove the correlation associated with data clustering (which may 

appreciably affect the test results) the program uses a Wilcoxon signed-ranks test, applied to 

the cluster means. The limitations of this simple method (Galbraith et al. 2010) are that the 

same weight is given to large and small clusters, and that the non-use of individual 

observations may reduce power; computer simulations confirm this slight loss of power 

compared with other, more elaborate, tests that take clustering into account. The procedure 

may not be appropriate if there are very few clusters. 

 

Test for correlation when data are missing 
 
This optional procedure (Parzen et al. 2010) tests the null hypothesis that there is no 

correlation between two numerical variables, while adjusting for missing data. It uses 

whatever unpaired values (i.e., values with missing pairmates) have been entered (missing 

values being indicated by an “x”), as well as the paired values. The test makes no 

assumptions about the distribution of the values. It is said to be appropriate if (a)  the 

probability that a value is missing ("missingness") is completely random, or (b) if  

"missingness" depends on the observed data but not on the missing values.  In the latter 

instance the test is stated to be unbiased, unlike tests based solely on the complete pairs, 

which "can potentially yield misleading inferences".  The test is said to have high power to 

detect a linear correlation or a nonlinear monotonic trend. 

 

The test statistic (Qa) is displayed, with the corresponding P value.  For comparison, the 

result of a parallel test based solely on complete pairs  - the correlation statistic proposed by 

Mantel (1963) (which can be correct only if "missingness" is completely random) - is 

displayed.  A difference between the test statistics suggests that "missingness" is not 

completely random. The program also displays the mean values of the variables in the 

complete and incomplete pairs, to permit an appraisal of possible bias and a decision on 

whether to use this procedure incorporating the incomplete pairs. 

 
Measure of  disagreement 

 

The measure of disagreement between two sets of matched numerical observations proposed 

by Costa-Santos et al. (2010) is based on the differences between the paired observations, in 

relation to the magnitude of the larger value in the pair. It is applicable to ratio-scale 
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variables (i.e., those where a zero value indicates absence of the attribute) with positive 

values. The measure ranges from 0 (no disagreement) to 1 (strong disagreement). 

 

Optionally, a 95% confidence interval is estimated for the measure of disagreement, using a 

bootstrap procedure. This procedure can produce a long delay. 

 

Partial omega-squared 
 
Partial omega-squared (ω

2
) is an effect-size index that expresses the proportion of the 

variability of the dependent variable that is associated with variability on the levels of the 

independent variable, without taking between-subject variability into account(Sheskin 2007: 

762).  

 

By Cohen's criteria, an omega-squared of 0.1379 or more indicates a large effect size, 0.0588 

or more (but less than 0.1379) indicates a medium effect size, and 0.0099 or more (but less 

than 0.0578) indicates a small effect size (Sheskin 2007: 763). Cohen (1988) warns that these 

criteria should be used only when there is no better basis for evaluation. 

 

Equivalence tests 
 
Optionally, the equivalence of the paired measurements is tested, using the procedure 

described by Yi et al. (2007). This requires entry of the bounds of “equivalence”, i.e., the 

largest difference between measurements that is to be regarded as negligible or ‘acceptable’.  

The tests are based on a comparison of the within-subject variance with this specified 

difference  (and also with this difference multiplied by 0.5, 0.75, 1.5, or 2).   A P value under 

0.05 implies good agreement (negligible variation, i.e. equivalence) at a 5% significance 

level. 

 
Comparison of distributions 
 
The proportion of similar responses (PSR, also called the OC or overlap coefficient) and the 

area between curves (ABC, also called the dissimilarity index) are measures of the similarity 

or dissimilarity (respectively) of two distributions (Giacoletti and Heyse 2011, Mizuno et al. 

2005; Rom and Hwang 1996). Differences between frequency curves reflect differences both 

in location (means) and in scale (variances). 

 

The PSR measures the degree of overlap of two probability distributions. It ranges from 0%, 

indicating completely disjoint distributions, to 100%, indicating a complete overlap. It has 

been suggested that a PSR around 70% is a reasonable criterion for equivalence in clinical 

studies (Rom and Hwang 1996). 

 

The ABC is a measure of the degree of separation between two distributions. Differences 

between frequency curves reflect differences in scale (variance) as well as in location (mean). 

The PSR and ABC are related (PSR = 1 - ABC/2). 

 

The estimators are applicable to normal distributions with similar or different means and 

variances, although computer simulations have shown  that the validity of the procedures is 

highest if  the distributions are  normal and variances are equal (Mizuno et al. 2005). 

 



                    D1.  PAIRED NUMERICAL OBSERVATIONS (NORMAL DISTRIBUTION)                                

56 

 These measures have been suggested as aids in comparisons of the results of two treatments. 

including crossover studies (Rom and Hwang 1996), and in examining the discriminatory 

capacity of tests (Giacoletti and Heyse 2011.)   

 

The PSR and ABC values are not reported if either exceeds 100%, which indicates that the  

procedures are inappropriate for this comparison, probably because the two distributions are 

almost or completely discrepant - i.e. with very little or no overlap.. 

 
 
ANOVA tables 
 

If the paired observations are positively correlated, an analysis of variance (ANOVA) table 

for the linear regression between the difference between the two ratings and the mean of the 

two ratings is displayed.  

 

In all instances, a two-way mixed model ANOVA table is displayed, showing between-

subjects, within-subjects and between-ratings sums of squares. (The P-values based on F 

tests in the ANOVA tables are one-tailed.) 

 

Analysis of covariance 
 

In studies that use paired baseline and follow-up measurements ("before" and "after" data)  to 

compare the changes in two groups, as in clinical trials and cohort studies, differences 

between the initial findings in the two groups may complicate interpretation of the findings.  

Analysis of covariance (which treats the follow-up value as the dependent variable and the 

baseline value as a covariate - in effect adjusting each subject's follow-up measurement for 

his or her baseline measurement) is recommended in such studies, although a simple 

comparison of the changes in the two groups is a reasonable alternative if there is no baseline 

imbalance and there is a high correlation (say r > 0.8) between baseline and follow-up 

measurements (Vickers and Altman 2001).  The use of analysis of covariance avoids the 

effects of regression to the mean (the tendency of subjects with initially low values to show a 

rise, and those with initially high values to show a drop). 

 

The procedure assumes that the slopes in the two groups (expressing the regressions of 

"after" values on "before" values) are parallel.   These slopes are therefore compared, and if 

the slope coefficients differ significantly (P < 0.05)  analysis of covariance is deemed 

inappropriate, and is not performed .  Heterogeneity with respect to deviations from the 

regression lines in the two groups is also tested.  A single adjusted (pooled) slope coefficient 

is computed for the analysis of covariance.  The program reports the difference between the 

"after" values in the two groups, for any given "before" value, i.e. controlling for the "before" 

value.  It tests the significance of this difference, and provides its standard error and 90%, 

95%, and 99% confidence intervals.  In addition, adjusted mean "after" values are computed 

for both groups, based on the arbitrary assumption that the overall mean of "before" values is 

the mean "before" value in each group. 

 

 
Number needed to treat 
 

If the results of a randomized clinical trial based on before-after measurements are entered 

(with the results in the treatment group in Stratum 1 and those of the control group in Stratum 
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2), together with the magnitude of the change (in units or as a percentage) that is defined as 

indicating successful treatment (the MID, or minimal important change), the number needed 

to treat is computed, with its approximate 95% confidence interval.  Depending on the 

purpose of the trial, this is the number of individuals who are needed in the treatment group  

in order to avoid a single case or other harmful event, or to produce a beneficial result. If the 

results of a cohort study are entered, the number is the number needed (in the group entered 

as Stratum 1) to avoid or produce one minimal important change. 

 

Three methods are used. The first method dichotomizes the results as "successful" or not 

successful", and calculates the proportions of successes in the treatment and control groups. 

The second method uses a "better", "worse" or "neither better nor worse" trichotomy in order 

to estimate the proportions in each group who are more successful.  In each instance the 

difference between the two proportions is reported, and its reciprocal is the number needed to 

treat.  Approximate 95% confidence intervals for the number needed to treat are computed 

from the confidence intervals of the proportions, unless the latter straddle zero, which would 

mean a confidence interval straddling infinity for the number needed to treat. The third 

method is based on the differences in a continuous scale. This is  a  sensitivity analysis, 

making a series of calculations of the number needed to treat, using different values for the 

assumed correlation (in a crossover study) between a subject's results when in the treatment 

and control groups. 

 

Probability and odds of replication 
 

Prep, which predicts the probability that an effect will be replicated in other studies, was 

proposed by Killeen (2005) as an alternative to significance tests in evaluating research and 

aiding practical decision making (Sanabria and Killeen 2007}. The measure predicts the 

probability that a replication will find a difference in the same direction (i.e., a "same-sign" 

result, not necessarily significant) as that found in the original study. Its appropriateness and 

accuracy have been debated (Iverson et al. 2009, Lecoutre and Killeen 2010, Killeen 2010).  

Iverson et al. argue that it overestimates the probability of replication. Cumming (2005), who 

states that "Killeen's Prep is wonderful, but may be difficult to understand", prefers to refer to 

it as the average probability of replication (APR), i.e. the chance of a same-sign result, when 

averaged over studies in similar populations. As Killeen(2005) points out, a particular value 

of Prep may be more or less representative of Prep values found for other studies carried out 

under similar conditions. 

 

The program also reports the odds of obtaining a same-sign effect, i.e. Prep / (1 - Prep), as 

suggested by Baguley (2012), and the probability that (on average) replicated studies will 

find a difference that lies within a confidence interval found in this study( Cumming et al. 

2004); if the present study's sample size is 30 or more, this probability is 75.5% for a 90% 

confidence interval, 83.4% for a 95% interval, and 93.1% for a 99% interval. 

 

 

Confidence intervals derived from P- value 
 

An option is offered for deriving confidence intervals for the difference between means from 

the P-value, for use in meta-analyses of incompletely reported studies., using the procedure 

described by Hirji and Fagerland (2011).  If the P-value was based on a paired t test, the 

number of pairs must be entered. 
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METHODS 
 
To avoid computational problems in extreme situations, zero divisors are replaced by 0.000001. 

At least three pairs of observations must be entered.   
 

Comparison of the paired observations 
 

Formulae for the Bradley-Blackwood test, Student's paired t-test, and  Pitman's test  are provided by Bartko 

(1994).  Linear regression methods are explained in all basic statistics textbooks. 

 
If stratified data are entered, the results of the one-tailed  t tests in the strata are combined by Stouffer's method 
(Stouffer et al. 1949: 5; DeMets 1987), based on weighted averages of the z values  computed for each test by 

transforming its one-tailed P-value to the corresponding normal score (Hedges and Olkin 1985: 39).  Three 

different sets of weights are used – weighting  the z values equally, by the sample sizes in the strata, and by the 

square roots of the sample sizes.  In addition, a heterogeneity test is performed, comparing the P-values in the 

strata (Wolf 1986: 45).  The heterogeneity test uses Wolf's formula: 

chi-square (k - 1 d.f.) = ∑(zi - MeanZ)
2
 

where  k = number of strata, 
zi = z value in stratum i 

MeanZ = mean z value. 

 

Tests for normality 
 
The Lilliefors test for normality (Lilliefors 1967) is explained by Sprent (1993: 77-78); it uses the critical values  

provided in Table IV.  The D'Agostino-Pearson test (D'Agostino 1986, D'Agostino and Pearson 1973) uses 

formula 6.19 of Zar (1998). The Shapiro-Wilk W test uses the formulae provided by Conover (1999: p. 450) to 

compute the test statistic, employing the coefficients in Conover's Table A16, and then uses Table A18 to 

convert the test statistic to an approximately normal random variable, from which an approximate P value is 

obtained. The Shapiro-Francia W' test uses the method described by Royston (1989), employing the inverse 
standard normal distribution function formula described by Hamaker (1978). Tied data are treated as sequential. 

 
Measures of agreement 
 

The correlation coefficient is computed by formula 19.1 of Zar (1998).  

 

The phi coefficient is computed by formula 16.20 in Sheskin (2007). 

 

The formula used for the tetrachoric correlation coefficient (Edwards and Edwards 1984 ) is 

(ORπ/4 – 1) / (ORπ/4 – 1) 
where OR = ad/bc 

a and d = numbers of concordant pairsπ 

b and c = numbers of discordant pairs 

This simple method, which was used by Stata until recently, provides an approximation that is acceptable in 

many situations (Digby 198 

3, referring to an almost identical formula [with ¾ instead of pi/4]) but that can be very inaccurate (Uebersax 

(2000). V. Wiggins, of the Stata Corporation, in a reply cited by Gunther and Hofler (2006), says that the 

approximation works well when the marginals in both directions are above 10%. PAIRSetc does not display the 

coefficient unless this condition is met, and there are no zero cells. An approximate 95% confidence interval is 

estimated from a large-sample estimate of the standard error (cited by Digby (1983). 
 

The point-biserial correlation coefficients are computed by formula 3 of Ulrich and Wirtz (2004). 

 

The formula for the population correlation coefficient  (Abdi and Williams 2010) is 

√{1 – [(1 - R
2
) * (N - 1) / (N - 2)]}  

where  R = correlation coefficient 

 N – number of paired observations 
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The coefficient of determination is R2, and the adjusted coefficient of determination is the square of the 

population correlation coefficient. 

 

The "true" correlation coefficient (RAB) is computed by the formula    

RAB = rAB / √(rA * rB)  (Trafimow 2015), 

Where    rAB = computed correlation coefficient between variables A and B 

       rA = correlation coefficient between replicate measurements of A 

       rB = correlation coefficient between replicate measurements of B 

The result is not shown if  RAB is less than -1 or more than 1.  

 

The following formulae (Shrout and Fleiss 1979) are used for the six intraclass correlation coefficients.  Shrout-

Fleiss ICC models  1,1 and 1,k are computed from a one-way random effects model ANOVA, models 2,1 and 

2,k from a two-way random effects model ANOVA, and models 3,1  and 3,k  from a two-way mixed effects 
model ANOVA. 

ICC model 1,1 = (MSB – MSW) / [MSB +  (k – 1)MSW] 

ICC model 1,k = (MSB – MSW) / MSB 

ICC model 2,1 = (MSB – MSE) / [MSB + (k – 1)MSE + k(MSJ – MSE) / N] 

ICC model 2,k = (MSB – MSE) / [MSB + (MSJ – MSE) / N] 

ICC model 3,1 = (MSB - MSE) / [MSB + (k - 1)MSE] 

ICC model 3,k = (MSB – MSE) / MSB 
where  MSB = between-subjects mean square 

MSE = residual within-subjects mean square 

MSW = within-subjects mean square 

N = number of subjects 

k = number of observations in matched set 

Formulae for confidence intervals for the six ICC models are provided by McGraw and Wong (1996a and 

1996b) in their Table 7, where they are referred to as ICC(1) and ICC(k) for Case 1, and ICC(A,1) and 

ICC(A,k) for Cases 2 and 3.  The formulae (except those for  models 2,1 and 2,k)  are set out in a convenient 

code by Steinley and Wood (2000).  Linear interpolation is used to estimate F values that are based on non-

integer degrees of freedom (and 1 d.f. is substituted for <1 d.f.) in the computation of confidence intervals for 
models 2,1 and 2,k; the latter  results  may differ slightly from those provided by SPSS, which handles non-

integer degrees of freedom differently. 

 

Intraclass correlation coefficients are not computed if the correlation coefficient is 1 or –1.  ICCs  indicative of 

the reliability of the mean of two ratings are not shown if they fall outside the (–1,+1) range.. 

 

The Spearman-Brown prediction formula (Fleiss 1986: 14-15: formula 1.30 ) for reliability (R) is 

R = Nr / [1 + (N – 1)r] 
where  N = number of replicates that are averaged 

 r = intraclass correlation coefficient (model 1,1) 

Fleiss’s formula 1.31 is used to estimate the number of replicates required to obtain a reliability of 0.75 or 0.8: 

N = P(1 – r) / [r(1 – P)] 
where P = 0.75 or 0.8 
 

The concordance correlation coefficient is computed by formula 19.76 of  Zar (1998: 409), with n substituted 

for (n – 1) in the denominator, and its 95% confidence interval is based on variance formula 2 of Lin (1989), as 

corrected by Lin  (2000).  [Version 1.14 and earlier versions of PAIRSetc used Zar’s formulae, which yield 

slightly different results.]  The confidence interval is not computed if the correlation coefficient is 1 or –1 or if 

its estimation requires division by zero. 

 

Lin's accuracy coefficient  is calculated by formula 2.27 of Lin et al (2012).  Its 90, 95, and 99% confidence 

limits are based on his equation 2.31, using a logit transformation. If the sample is small, dividing the CCC by 

the reported coefficient does not exactly coincide with the reported correlation coefficient, as it should (Lin et 

al. 2012), because of the use of n or n-1 in different formulae. 

 
The formulae for the two repeatability coefficients (Bland and Altman 1986; Chinn 1990) are 

1.96√(∑D
2
 / N) or 

1.96√(2.SSW / N) 
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and (controlling for any effect of bias)  

1.96√[2.SSE / (N - 1)] 
where D = difference between paired observations     

 N = number of pairs      

 SSW = within-subjects sum-of-squares    

 SSE = residual within-subjects sum-of-squares (excluding the between-ratings component). 

Approximate 95% confidence intervals are obtained by substituting confidence limits for SSW and SSE, 

estimated by the method described by Zar (1998: formula 7.16), in the above formulae. 

 

The formula for the standard error of measurement SEm is provided by Kahn and Sempos (1989: 240).  SEm is 

also the square root of the within-subjects mean square shown in the ANOVA table (Fleiss 1986: 11). The 

formula for the SD among persons is also provided by Kahn and Sempos (1989: 241).  

 
The 95% confidence intervals for the “true value” are estimated from the SD of the differences between values, 

by the method described by Peat et al. (1994); the t-distribution is used in the computation. 

 

The within-subject coefficient of variation (WSCV) is computed by the root mean square procedure described by 

Bland (2006).  This yields a result that is similar to but not identical with the logarithmic method described by 

Bland and Altman (1996b). The approximate 95% confidence interval for the “true value” corresponding to a 

measurement of X is from X divided by (1.96GSD) to X multiplied by (1.96GSD),  

where GSD  = geometric standard deviation  =  (WSCV + 1)
2 

 

St Laurent's gold-standard correlation coefficient (St Laurent 1998) is computed by the formula 

Rg = √{1 / [2B(1 / Rc) - 1] + 1}    
where B = regression coefficient (slope) of the approximate measurement on the gold-standard measurement       

 Rc = concordance correlation coefficient. 

An approximate 95% confidence limit is computed in accordance with St Laurent's Proposition 1. 

 

The 95% limits of agreement (Chinn 1991, Bland and Altman 1999) are 

  D - 1.96(SD)  and 

   D + 1.96(SD). 
The 95% confidence limits for the limits of agreement are estimated by the method described  by Bland and 

Altman (1986, 1999) and by the MOVER (Method of Variance Estimates Recovery) method described by 
Donner and Zou (2010). 

 

 The Spearman-Brown prediction formula (Wikipedia) is 

Nr / [1 + (N – 1)r] 
where  N = number of replicates that are averaged 

 r = intraclass correlation coefficient. 

 
This application of the Spearman-Brown formula was suggested by its use by Solomon (2004). 

 

Comparison of distributions 

 

If the two variance are not equal, PAS is computed by formula 2 of Rom and Hwang (1996) 

  

If they are equal, PSR is computed by formula 2 of Giacoletti and Heyse (2011). 

 

ABC is derived from PSR, using Giacoletti and Heyse's fromula 4. 

 

Clustered data 
 

If clustered data are entered, a Wilcoxon signed-ranks test based on the cluster means is employed. This uses  

the formula provided by Siegel and Castellan (1988: 92, formula 5.5), but allowing for the effect of ties on the 

variance by replacing the denominator (as suggested by Sprent 1993: 53 and Mehta and Patel 1991: 7-10) by 

√∑[Si] / 4), where Si = the square of the rank of the difference between paired observations.  Nondiscrepant 

pairs are ignored.  If there are fewer than 20 pairs, significance is appraised by using critical levels for one-

tailed P = .05, .025, .01, .005, .0025, and .0005 (derived from Siegel and Castellan 1988: Table H; and Zar 

1998: Table B.12).  If the sample is larger a normal approximation is used, with allowance made for ties . 
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Test for correlation when data are missing 

 

The test statistic (Qa), which is regarded as a chi-square statistic with one degree of freedom, is calculated by 

formula 7 of Parzen et al. (2010) The variance (the denominator in the formula) is estimated by the bootstrap 

procedure described by Parzen et al. The correlation statistic proposed by Mantel (1963) is calculated from 
Pearson's correlation coefficient by formula 4 of Parzen et al. 

 

The bootstrap procedure uses 2000 random samples with the same number of pairs (complete and incomplete) 

as the original sample, each sample drawn (with replacement) from the values in the original sample. The 

variance required for the test is derived from the estimates of covariance (under the null hypothesis) in the 2000 

bootstrap samples (formula 9). 

 

The random sampling in this bootstrap procedure uses a pseudo-random number generator described by 

Wichman and Hill (1985), which derives each number in turn from three seed numbers that it modifies for 

subsequent use.  Initial values for the seed numbers are generated by Delphi's inbuilt random-number 

procedures, namely RANDOMIZE, using the system clock, and RANDOM, which generates three random 

numbers from which the required seed numbers are computed.  Delphi's RANDOM procedure is augmented by  
an additional randomizing shuffle, using the algorithm of Bays and Durham, as described by Press et al. (1989: 

215-217). The formula for each selection is trunc(RM) + 1  
where R is a random number in the range 0 < R < 1  

M = the number of candidates. 

 

Measure of disagreement 
 
The formula for this measure (Costa-Santos et al. 2010) is 

 ∑Li / n 

where Li = log{[ai - bi| / max(ai,bi)] + 1}.log(2) 

 ai and bi are the observations in pair i  

 n = the number of pairs of observations 

If ai and bi are equal, Li is taken as 0. 

 

The measure is not computed if any ai or bi is negative. The maximum number of sets of matched observations 
is 500. 

 

The confidence interval is obtained by a bootstrap procedure, using the basic percentile method (Efron 1981, 

Efron and Gong 1983) as described by Sheskin (2007: 532-536). The approximate 95% limits are the (2.5)th 

and (97.5)th percentiles of the distribution of the measures of disagreement (computed by the above method) in 

1000 random samples of the same size as the original sample, each drawn (with replacement) from the values in 

the original sample. Because of resampling, repetitions of the procedure may yield slightly different results. 

 

The random sampling in this bootstrap procedure uses a pseudo-random number generator described by 

Wichman and Hill (1985), which derives each number in turn from three seed numbers that it modifies for 

subsequent use.  Initial values for the seed numbers are generated by Delphi's inbuilt random-number 
procedures, namely RANDOMIZE, using the system clock, and RANDOM, which generates three random 

numbers from which the required seed numbers are computed.  Delphi's RANDOM procedure is augmented by 

an additional randomizing shuffle, using the algorithm of Bays and Durham, as described by Press et al. (1989: 

215-217). The formula for each selection is 

trunc(RM) + 1 
where  R is a random number in the range 0 < R < 1 

M = the number of candidates.   
 

Tests of equivalence 
 
The method is described by Yi et al. (2008). 

Chi-square  = SSW / (D
2
 x 1.96 x 1.96 x 2) 

where SSW = within-subject variance (based on ANOVA) 

 D = maximum acceptable difference 
The P value for the test is 1 minus the P value associated with this chi-square, with n(k-1) degrees of freedom, 
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where  n = no. of sets of paired measurements 

 k = no. of repeated measurements (i.e., 2) 

 

Comparison of distributions 
 
If the two variance are not equal, PAS is computed by formula 2 of Rom and Hwang (1996) 
If they are equal, PSR is computed by formula 2 of Giacoletti and Heyse (2011). 

ABC is derived from PSR, using Giacoletti and Heyse's formula 4. 

 

Partial omega-squared 
 

This is calculated by equation 17.10 of Sheskin (2007). 

 

Probability and odds of replication 
 
Based on Lecoutre, Lecoutre and Poitevineau (2009, formula 13),  

 Prep = 1 - P(|t | / √ (2)), 

where P(|t| / √(2)) is the one-tailed probability associated with a t value of t / √(2}, with df degrees of 

freedom  

 t is the t value (with df degrees of freedom) obtained by a paired t test 

 

The probability that a replicated study will find a difference that lies within a 100C% confidence interval for the 

difference (Cumming et al. 2004) is 1 minus double the P value corresponding to a standard normal deviate of 

C / √ (2). 

 

ANOVA tables 
 

The ANOVA tables are explained by Bartko (1994). 

 

Analysis of covariance 
 

The method of calculation is explained in detail by Armitage et al. 2002: 332-335) and by Ferguson (1966: 332-

339).  A t test (Armitage et al. 2002: formula 11.20) is used to compare the two slope coefficients, and the 

pooled slope coefficient is computed by formula 11.23.  

 

Heterogeneity with respect to deviations from the regression lines in the two groups is tested  (Snedecor and 
Cochran 1980: 386) by applying a two-tailed F test to the ratio of the residual mean squares; the residual sums 

of squares are computed by formula 7.6 of Armitage et al. (2002: 292).  The standard deviation about regression 

(the square root of the residual mean square) is reported for each group. 

 

The difference between the "after" values at a given "before" value is computed by formula 11.32 of Armitage 

et al. (2002); its variance is calculated by formula 11.33 and used in a t test (formula 11.35) and for estimating 

confidence intervals.  Adjusted mean "after" values are computed for both groups, based on the assumption that 

the observed overall "before" mean applies to both groups (formula 11.36). 

 

Analysis of covariance is not done if the slope coefficients in the two groups differ significantly, or if the 

"before" or "after" values are invariant in either group. 
 

Number needed to treat 
 
The method using a dichotomy is described by Walter (2001: section 3.2).  The method using a trichotomy is 

described by Guyatt et al. (1998); approximate confidence intervals are estimated by a method analogous to that 

of Walter(2001: formula 3).  The method using a continuous scale is described by Walter (2001: section 4.2). If 

this method yields a number needed to treat exceeding 100, it is reported as ">100". 

 

 
Confidence intervals derived from P- value 
 
If the number of pairs is entered, the program assumes that the P-value was based on a paired t test; otherwise, a 
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z test is assumed.  Formulae for deriving confidence intervals for the difference between means  both for t tests 

and for z tests. are provided by Hirji and Fagerland (2011). 
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D2.  PAIRED NUMERICAL OBSERVATIONS 

 (LOGNORMAL DISTRIBUTION) 
 

This module is appropriate for the analysis of paired numerical observations (in different 

subjects or the same subject) that have a lognormal distribution (such as, for example, 

bronchial responsiveness, recovery times after drug administrations, or the domestic house-

dust allergen level).  It appraises differences and agreement between the two sets of 

observations   It can be used to analyse matched-control trials and case-control studies, 

before-after studies, reliability studies, comparisons of measurement methods, and other 

comparisons of paired subjects or observations. 

 

It may be useful in reliability studies of a normally-distributed variable, if the simple 

difference between the observations under comparison is found to increase with the level of 

the measurement.  In such instances, the difference between the logs of the observations (i.e., 

the ratio of the measurements) may be found to be reasonably constant throughout the range 

of measurement, facilitating estimation of the agreement between measurements. 

 

Computations are based on the logarithms of the values that are entered, which may be 

measurements in paired subjects or repeated measurements in the same subjects.  Each pair 

of matched observations (labelled "A" and "B")  can be entered in a separate line, or pairs 

with the same values can be entered together, with their frequency; up to 500 lines may be 

entered. 

 

If the data are stratified, enter each stratum in turn.  Click on “All strata” whenever 

combined results are required.  

 

In a clinical trial or cohort study that uses paired baseline and follow-up measurements to 

compare the changes in two groups, enter each group as a separate stratum and then click on 

“All strata”  for a comparison using analysis of covariance. 

 

The program provides a comparison of the paired log-transformed observations, 

including the Bradley-Blackwood test, Student's paired t-test, and Pitman's test, and  

measures of agreement between the log-transformed observations (correlation 

coefficient, intraclass correlation coefficient, Lin’s concordance correlation coefficient (with 

Lin’s accuracy coefficient), repeatability coefficients, the standard error of measurement, the 

confidence interval for the “true value” corresponding to an observed measurement, St 

Laurent's correlation coefficient, 95% limits of agreement, and  the association between the 

difference and the mean value). 

 

If stratified data are entered, the paired one-tailed t tests in the separate strata are combined, 

and the heterogeneity of the P-values in the strata is tested. 

 

 

Comparison of the paired log-transformed observations 
 
The program displays the ratio of the paired values, with its confidence intervals. 
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The tests for differences between the log-transformed observations are the Bradley-

Blackwood test, which simultaneously tests the means and variances (Bradley and 

Blackwood 1989; Bartko 1994), Student's paired t-test, which compares the means, and 

Pitman's test for the equality of variances.  Two-tailed P values are displayed. 

 

Since the paired t test is based on the assumption that the differences are normally distributed 

(Zar 1998: 1634, Armitage et al . 2002:  103)  four tests for the normality o the log-

transformed observationsare performed – the Lilliefors test, the D'Agostino-Pearson test, the 

Shapiro-Wilk W test (Shapiro and Wilk 1965, 1968), and the Shapiro-Francia W' test 

(Shapiro and Francia 1972) 

. 

The Lilliefors test (Lilliefors 1967) examines the deviation of the cumulative frequency from 

the standard normal cumulative distribution; the result is reported as P <0.01 or P < 0.05 or 

P<0.10 or P<0.15, >.0.1  or  P<0.2, >0.15; or P>0.2.   The D'Agostino-Pearson test 

(D'Agostino and Pearson 1973, which is based on tests for skewness and kurtosis, is not 

performed if fewer than 50 pairs are entered. It. is a method of choice if there are 50 or more 

observations (D’Agostino et al.1990). The Shapiro-Wilk W test is based on the correlation 

between the ordered values and some constants that would be closely correlated in a sample 

from a normal population. It is "arguably the best omnibus test" (Royston 1993), although it 

is affected by tied data. It is performed if there are between 7 and 50 observations. The 

Shapiro-Francia W' is based on the correlation between the ordered observations and the 

expected standard normal order statistics. It has about the same overall power as the Shapiro-

Wilks W test. It is affected by tied data. 

 

If stratified data are entered, the paired one-tailed t tests in the separate strata are combined 

by Stouffer’s method (Stouffer et al. 1949, p. 45; DeMets 1987) to produce overall one-tailed 

tests that control for the stratifying variables.  Three different sets of weights are used for this 

purpose – weighting the test results equally, by the sample sizes in the strata, and by the 

square roots of the sample sizes.  In addition, the heterogeneity of the P-values in the strata is 

tested. 

 

Measures of agreement between the log-transformed observations 
 

The measures of agreement have special relevance to studies of reliability, comparisons of 

measurement methods, and the clinical application of measurements. 

 

A simple correlation coefficient, the intraclass correlation coefficient, and Lin’s concordance 

correlation coefficient are computed in all instances.   

 

If the paired observations are positively correlated the program also provides measures that 

may be useful if A and B are replicate measurements, or if they denote two different methods 

of measurement.  The measures for use in studies of replicate measurements are repeatability 

coefficients, the standard error of measurement, and the confidence interval for the “true 

value” corresponding to an observed measurement.  The measures that are appropriate in 

comparisons of measurement methods are St Laurent's correlation coefficient (for use if one 

of the methods is regarded as a “gold standard”), and 95% limits of agreement.  The program 

displays the correlation coefficient between the ratio and  mean of A and B. 

 

The simple correlation coefficient is seldom helpful in comparisons of methods of 

measurement (Bland and Altman 1995a; Altman 1991: 401-402), since at best it points to an 
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association between the (log-transformed) measurements, and does not tell how closely they 

agree.  

 

The intraclass correlation coefficient (ICC) is a measure of agreement that expresses the 

correlation between measurements within individuals or pairs of matched individuals.  It 

ranges from -1 to +1, zero indicating no agreement.  The ICC is displayed with its 

significance level and 95% confidence interval.  The ICC is affected by the degree of 

variation among the subjects, and may be misleadingly low if the subjects are very similar, or 

if differences between paired observations are large relative to the differences between 

subjects (Bartko 1994).  In the appraisal of replicated measurements a low coefficient may 

express variability of the characteristic measured, as well as low reliability of measurement; 

this is especially important if measurements were conducted at different times.  The 

usefulness of the ICC in comparisons of two methods of measurement (Bartko 1994; Lee 

1992) is constrained by these and other limitations (Muller and Buttner 1994; Bland and 

Altman 1995a). 

 

The concordance correlation coefficient is computed with its 95% confidence interval.  

Suggested by Lin (1989) as an improved measure of the reproducibility of measurements, its 

use is appropriate in comparisons where the two observers (or measurement methods) are 

selected “at random” to represent all observers (or measurement methods) to whom the  

assessed consistency relates; whereas if they are “fixed”–- e.g. in a comparison of two kinds 

of measuring instrument – it is more appropriate to use the intraclass correlation coefficient 

(Mueller and Buettner 1994).  It has been tentatively suggested that a Lin coefficient of >0.99 

indicates almost perfect agreement, 0.95-0.99 substantial agreement, 0.90-0.95 moderate 

agreement, and <0.90 poor agreement (NIWA 2009). The Fisher z transformation of the 

coefficient is displayed, with its standard error, for use if the findings are to be compared 

with those in a different set of paired observations; (for this purpose, the standard error of the 

difference between two z transformations is the square root of the sum of their variances). 

 

Lin's accuracy coefficient Xa (Lin et al. 2012), also referred to as  the  bias  factor Cb (Lin 

1989) is also reported. Lin's CCC has two components - the correlation coefficient, which is 

a measure of precision that evaluates deviations from the best-fit line, and the accuracy 

coefficient, which  measures how far the best-fit line deviates from a 45-degree line through 

the origin. The coefficient varies from 0 to 1; the further it is from 1, the greater the 

deviation. Confidence intervals are reported. 

 

The coefficients of repeatability express the expectation (with 95% confidence) of the 

maximum size of the absolute difference between paired  log-transformed measurements 

(i.e., for the ratio of paired measurements).  Two coefficients are provided, with their 

approximate confidence intervals.  The first (Bland and Altman 1986; Chinn 1990) is valid if 

there is no bias (no systematic difference between the observations), i.e. if the mean 

difference is zero; this may not be so if the measurement process alters the quantity or if 

knowledge of the first measurement affects the second.  The second coefficient controls for 

any effect of bias; it is based on the residual within-subjects sum-of-squares, after removal of 

the between-ratings component. 

 

The standard error of measurement (Fleiss 1986: 11) –.also called the “technical error” 

(Kahn and Sempos 1989: 239-242) or “the SE of an obtained score” (Guilford and Fruchter 

1986: 413) – is an index of reliability that expresses variation between observers and other 
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causes of differences between repeated observations.  The standard error of measurement is 

expressed in logarithmic units.   

 

The program computes an approximate 95% confidence interval for the “true value” 

corresponding to an observed measurement.  This should be used with caution, since it 

assumes that the width of the confidence interval is independent of the magnitude of the 

value (Guilford and Fruchter 1986: 413).  

 

St Laurent's gold-standard correlation coefficient is a measure of criterion validity – it is a 

measure of the agreement between a measurement and a “gold standard” (St Laurent 1998).  

Two values are displayed, with their approximate 95% confidence intervals, taking A or B in 

turn as the “gold standard”.  The procedure assumes that the “gold- standard” measurements 

and the differences between the two sets of (log-transformed) measurements are normally 

distributed. 

 

The 95% limits of agreement (Bland and Altman 1995a, 1995b; Altman 1991: 397-400) 

answer the question, “given a measurement by one method, how far might this be from a 

measurement by the other method?”  These demarcate the bounds of the range that, with a 

95% probability, includes the difference between log-transformed measurements of the same 

subject by the two methods (i.e., the ratio of the measurements).   The 95% confidence 

intervals of the limits of agreement are estimated (the limits of agreement may be very 

imprecise if the sample is small). 

 

Use of the 95% limits of agreement assumes that the differences are reasonably constant 

throughout the range of measurement.  To check this assumption, the program displays the 

coefficient of correlation between the difference and the mean of the two log-transformed 

values, and the regression of the difference on the mean.  The correlation and regression 

coefficients may be expected to be zero if the mean difference and the scatter of differences 

do not change with increasing values. 

 

Considerable inconsistencies may occur between the limits of agreement and  the ICC in the 

interpretation of agreement, and Costa-Santos et al. (2011) suggest that these methods should 

be used in tandem. 

 

Even when one of the methods of measurement is a new one and the other is an accepted 

standard, it is preferable to examine the relationship between the difference and the mean 

value rather than the relationship between the difference and the standard measurement, 

which (as shown by Bland and Altman 1995b) is likely to be misleading. 

 

Analysis of covariance 
 
In studies that use paired baseline and follow-up measurements ("before" and "after" data)  to 

compare the changes in two groups, as in clinical trials and cohort studies, differences 

between the initial findings in the two groups may complicate interpretation of the findings.  

Analysis of covariance (which treats the follow-up value as the dependent variable and the 

baseline value as a covariate - in effect adjusting each subject's follow-up measurement for 

his or her baseline measurement) is recommended in such studies, although a simple 

comparison of the changes in the two groups is a reasonable alternative if there is no baseline 

imbalance and there is a high correlation (say r > 0.8) between baseline and follow-up 

measurements (Vickers and Altman 2001).  The use of analysis of covariance avoids the 
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effects of regression to the mean (the tendency of subjects with initially low values to show a 

rise, and those with initially high values to show a drop). 

 

The procedure assumes that the slopes in the two groups (expressing the regressions of 

"after" values on "before" values) are parallel.  These slopes are therefore compared, and if 

the slope coefficients differ significantly (P < 0.05)  analysis of covariance is deemed 

inappropriate, and is not performed .  Heterogeneity with respect to deviations from the 

regression lines in the two groups is also tested.  A single adjusted (pooled) slope coefficient 

is computed for the analysis of covariance.  The program reports the difference between the 

log "after" values in the two groups, for any given "before" value, i.e. controlling for the 

"before" value.  It tests the significance of this difference, and provides its standard error.  

Since this is a difference between logs of two values, its antilog is the ratio of the two values.  

The program therefore reports the ratio of the “after” values in the two groups, for any given 

“before” value, with 90%, 95%, and 99% confidence intervals for the ratio. 

 

METHODS 
 

If zero values are encountered, 1 is added to all values before log-transforming them. Logs to base 10 are used.  

To avoid computational problems in extreme situations, zeroes are sometimes changed to 0.0000001 or 

0.000001. 

At least three pairs of observations must be entered.   

 

Comparison of the paired log-transformed observations 
 

Formulae for the Bradley-Blackwood test, Student's paired t-test, and  Pitman's test  are provided by Bartko 

(1994).  Linear regression methods are explained in all basic statistics textbooks. 

 

If stratified data are entered, the results of the one-tailed  t tests in the strata are combined by Stouffer's method 
(Stouffer et al. 1949: 5; DeMets 1987), based on weighted averages of the z values  computed for each test by 

transforming its one-tailed P-value to the corresponding normal score (Hedges and Olkin 1985: 39).  Three 

different sets of weights are used – weighting  the z values equally, by the sample sizes in the strata, and by the 

square roots of the sample sizes.   In addition, a heterogeneity test is performed, comparing the P-values in the 

strata (Wolf 1986: 45).  The heterogeneity test uses Wolf's formula: 

chi-square (k - 1 d.f.) = ∑(zi - MeanZ)
2
 

where  k = number of strata, 
zi = z value in stratum i 

MeanZ = mean z value. 

 
Tests of lognormality 
 

The Lilliefors test (Lilliefors 1967) is explained by Sprent (1993: 77-78); it uses the critical values provided in 

Table IV. 

 

The D'Agostino-Pearson test (D'Agostino 1986, D'Agostino and Pearson 1973) uses formula 6.19 of Zar 

(1998). The test is not performed if there are under 50 values. 

 
The Shapiro-Wilk W uses the formulae provided by Conover (1999: p. 450) to compute the test statistic, 

employing the coefficients in Conover's Table A16, and then uses Table A18 to convert the test statistic to an 

approximately normal random variable, from which an approximate P value is obtained. 

 

The Shapiro-Francia W' uses the method described by Royston (1989), employing the inverse standard normal 

distribution function formula described by Hamaker (1978). Tied data are treated as sequential. 

 

Measures of agreement between the log-transformed observations 
 

The correlation coefficient is computed by formula 19.1 of Zar (1998).The significance test for the coefficient 

uses Hotelling's modified z transformation (Sokal and Rohlf 1981: 583-587) if N < 30.   
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The following coefficients are computed only if the correlation coefficient is positive. 

 

The intraclass correlation coefficient that is computed is a mixed model ICC for two fixed ratings, assuming a 

two-way mixed analysis of variance model (Bartko 1994).  

 
The concordance correlation coefficient is computed by formula 19.76 of  Zar (1998: 409), and its confidence 

interval s are based on variance formula 2 of Lin (1989), as corrected by Lin  (2000).  [Version 1.14 and earlier 

versions of PAIRSetc used Zar’s formulae, which yield slightly different results.]  Confidence intervals are not 

computed if the correlation coefficient is 1 or –1, or if its estimation requires division by zero. 

 

Lin's accuracy coefficient is calculated by formula 2.27 of Lin et al. (2012). Its 90, 95, and 99% confidence 

limits are based on his equation 2.31, using a logit transformation. If the sample is small, dividing the CCC by 

the reported coefficient does not exactly coincide with the reported correlation coefficient, as it should (Lin et 

al. 2012), because of the use of n or n-1 in different formulae. 

  

The formulae for the two repeatability coefficients (Bland and Altman 1986; Chinn 1990) are 

1.96√(∑D
2
 / N) or 

1.96√(2.SSW / N) 
and (controlling for any effect of bias)  

1.96√[2.SSE / (N - 1)] 
where D = difference between paired observations     

 N = number of pairs      

 SSW = within-subjects sum-of-squares    

 SSE = residual within-subjects sum-of-squares (excluding the between-ratings component). 

Approximate confidence intervals are obtained by substituting confidence limits for SSW and SSE, estimated 
by the method described by Zar (1998: formula 7.16), in the above formulae. 

 

The formula for the standard error of measurement SEm is provided by Kahn and Sempos (1989: 240).  SEm is 

also the square root of the within-subjects mean square shown in the ANOVA table (Fleiss 1986: 11). The 

formula for the SD among persons is also provided by Kahn and Sempos (1989: 241).  

 

The 95% confidence interval for the “true value” is estimated from the SD of the differences between (log-

transformed) values, by the method described by Peat et al. (1994); the t-distribution is used in the computation. 

 

St Laurent's gold-standard correlation coefficient (St Laurent 1998) is computed by the formula 

Rg = √{1 / [2B(1 / Rc) - 1] + 1}  

   
where B = regression coefficient (slope) of the approximate measurement on the gold-standard measurement       

 Rc = concordance correlation coefficient. 
An approximate 95% confidence limit is computed in accordance with St Laurent's Proposition 1. 

 

The 95% limits of agreement (Chinn 1991) are 

  D - 1.96(SD)  and 

   D + 1.96(SD). 
The 95% confidence limits for the limits of agreement (Bland and Altman 1986; Altman 1991: 422-423) are 
estimated by subtracting and adding t.SE.  In these formulae, 

D = mean of the differences (Value 1 minus Value 2) 

SD = standard deviation of the differences 

SE = √[SD2 / N) + (t
2
.SD2 / 2N)], which reduces to SD √[2 + t2] / √(2N) 

t = the value in the t distribution corresponding to a two-tailed P of 0.05 with (N - 1) degrees  of freedom 

N = number of pairs 

 

Analysis of covariance 
 

The method of calculation is explained in detail by Armitage et al. 2002: 332-335) and by Ferguson (1966: 332-

339).  A t test (Armitage et al. 2002: formula 11.20) is used to compare the two slope coefficients, and the 

pooled slope coefficient is computed by formula 11.23.  

 



                                    D2.  PAIRED NUMERICAL OBSERVATIONS (LOGNORMAL DISTRIBUTION) 

70 

Heterogeneity with respect to deviations from the regression lines in the two groups is tested  (Snedecor and 

Cochrane 1980: 386) by applying a two-tailed F test to the ratio of the residual mean squares; the residual sums 

of squares are computed by formula 7.6 of Armitage et al. (2002: 292).  The standard deviation about regression 

(the square root of the residual mean square) is reported for each group. 

 

The difference between the "after" values at a given "before" value is computed by formula 11.32 of Armitage 
et al. (2002); its variance is calculated by formula 1.33 and used in a t test (formula 11.35) and for estimating 

confidence intervals.  Adjusted mean "after" values are computed for both groups, based on the assumption that 

the observed overall "before" mean applies to both groups (formula 11.36). 

 

Analysis of covariance is not done if the slope coefficients in the two groups differ significantly, or if the 

"before" or "after" values are invariant in either group. 
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D3.  PAIRED NUMERICAL OBSERVATIONS 

(NORMALITY NOT ASSUMED) 
 

This module is appropriate for the analysis of paired numerical observations (in different 

individuals or the same individual), where  a normal  or lognormal distribution is not 

assumed. It appraises differences and agreement between the two sets of observations   It can 

be used to analyse matched-control trials and case-control studies, before-after studies, 

reliability studies, comparisons of measurement methods, and other comparisons of paired 

subjects or observations. 

 

The observations entered may be measurements in paired subjects, e.g. matched cases and 

controls, or replicated measurements in the same subjects.  Each pair of matched 

observations (labelled "A" and "B")  can be entered in a separate line, or pairs with the same 

values can be entered together, with their frequency; up to 500 lines may be entered. 

 

If the data are stratified, enter each stratum in turn.  Click on “All strata” whenever 

combined results are required.   

 

The program provides a comparison of the paired observations, including nonparametric 

tests (permutation test, sign test, Wilcoxon signed-ranks tests, Hollander's test for bivariate 

symmetry), the median difference between the two values (and Hodges-Ledhmann 

estimates), the median ratio of the two values in the population, and the proportion with 

higher values in one set of observations (with their 95% confidence intervals), measures of 

agreement (95% limits of agreement for untransformed and log-transformed data, and an 

accuracy estimator for screening/diagnostic tests), a measure of disagreement,  

nonparametric regression analysis (including monotonic regression), and rank 

correlation coefficients and other measures of association.   

 

If stratified data are entered, the paired one-tailed Wilcoxon signed-ranks  tests in the 

separate strata are combined, and the heterogeneity of the P-values in the strata is tested. In a 

study of several clusters, with paired observations in each cluster, enter each cluster as a 

separate stratum, and then click on "All strata" for a combined analysis. 

 

 

Comparison of the paired observations 
 
The program displays the median and mean values in the two sets of observations, and the 

median difference between the two values in the population, with its approximate 95% 

confidence intervals.  In a matched-control trial or before-after study, the median difference  

is an estimator of the treatment effect.  On the assumption that the data come from 

distributions that are identical except in the magnitude of the values, these results express the 

difference between the population means, as well as the difference between the population 

medians.  

 

The median ratio of the two values in the population, with its approximate confidence 95% 

confidence interval, is estimated in the same way, after log-transforming the observations.  

The results that are displayed are the exponents of the median difference computed from log-

transformed values and its confidence limits. 
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The proportion with a higher value in one set of values is displayed, with its approximate 

95% confidence interval. 

 

The permutation (randomization) test for paired replicates is performed only if the number of 

pairs (N) is 25 or less.  It may be slow, since it requires processing of 2
N 

possibilities, i.e. 

33,554,432 if N = 25; optionally, the procedure can be aborted.  The test is appropriate for 

interval-scale variables. It assumes that the difference between paired observations is a 

measure of the difference in the characteristic that is measured; no assumptions are made 

about normality or other characteristics of the distribution.  Exact one-tailed P-values are 

displayed if P < 0.05; the one-tailed value is doubled and shown as a two-tailed value. 

 

The Wilcoxon signed-ranks test (Siegel and Castellan 1988: 87-95) tests whether the median 

discrepancy between paired observations is zero.  It is appropriate if the differences between 

paired observations are an acceptable basis for ranking the differences in the characteristic 

that is measured.  The test is based on the assumption that the distribution of intra-pair 

differences is symmetric around their median; if this condition is not met some statisticians 

suggest transformation of the data in order to enhance symmetry (Altman 1991: 204).  The 

program  provides a skewness index (0% = complete symmetry, 100% = extreme asymmetry 

in either direction) and (if there are no zero or negative values) repeats the test, using log-

transformed values, which may reduce asymmetry.   

 

If stratified data are entered, the one-tailed Wilcoxon signed-ranks tests in the separate strata 

are combined by Stouffer’s method (Stouffer et al. 1949, p. 45; DeMets 1987) to produce 

overall one-tailed tests that control for the stratifying variables.  Three different sets of 

weights are used for this purpose – weighting  the test results equally, by the sample sizes in 

the strata, and by the square roots of the sample sizes.  In addition, the heterogeneity of the 

P-values in the strata is tested. 

 

Hollander's test for bivariate symmetry (exchangeability) tests the null hypothesis that paired 

numerical observations are interchangeable; for example, in a before-after trial using the 

same subjects, that there is no treatment effect (Hollander and Wolfe 1999: 94-104).  It is 

sensitive to differences between the paired observations and in their dispersion.  The program 

uses a large-sample approximation (Hollander and Wolfe 1999: 96-97) to determine the P 

value; the results should be used with caution if the sample is small.  A low P indicates that 

the paired observations are not interchangeable. 

 

The sign test is based on the direction, not the magnitude, of the differences between the 

paired observations. [If the numbers of pairs with differences in each direction are known, 

they can be entered in module A of the DESCRIBE program.] 

 

The Hodges-Lehmann procedure (Sprent 1993:89-90) determines the median of the 

differences between two matched sets, e.g matched cases and controls (with 90%, 95%, and 

99% confidence intervals).  [This is not necessarily the same as the deference between the 

medians, or the median of the differences observed in each matched set.] 

 

A large-sample method of analysis is used if there are over 50 matched sets. 

 

The analysis takes account of tied differences (if the large-sample method is used), but not of 

variation within matched sets. 
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Measures of agreement 
 
Lin's concordance correlation coefficient (Lin 1989 and 2000), which is based on an 

assumption of normality, is not computed, although computer simulations have shown that 

the coefficient is robust and can cope with samples from non-normal distributions (Lin 

1989). If it is required, module D1 can be used; the results should then be regarded as 

approximate. 
 

The value of any correlation coefficient is affected by the range of values included in the 

analysis (Lin and Chinchilli 1997) – the wider the range, the stronger the correlation – and 

this should be taken into account when coefficients are appraised or coefficients based on 

different samples are compared.  The program therefore reports this range (the range of the 

means of paired values). 

 

The 95% limits of agreement (Bland and Altman 1995a, 1995b; Altman 1991: 397-400) are 

appropriate when paired measurements of the same subjects have been entered in order to 

compare two observers or methods of measurement.  The limits of agreement express the 

range that, with approximately 95% probability, includes the difference between single 

measurements of the same subject by the two observers or methods, answering the question, 

“given a measurement by one observer or method, how far might this be from a measurement 

by the other observer or method?”  The limits are  unreliable if the sample is small, and are 

not displayed if under 20 pairs of observations are entered.  Their confidence intervals should 

be regarded as rough approximations.  The limits of agreement method assumes that the 

differences are reasonably constant throughout the range of measurement.  As a check on this 

assumption, the program displays Kendall's rank correlation coefficient (tau b; see below) for 

the difference and the mean of the two values.  This may be expected to be zero if the mean 

difference and the scatter of differences do not change with increasing values. Even when 

one of the methods of measurement is a new one and the other is an accepted standard, it is 

preferable to examine the relationship between the difference and the mean value rather than 

the relationship between the difference and the standard measurement, which (as shown by 

Bland and Altman 1995b) is likely to be misleading. 

 

Approximate 95% limits of agreement are also computed for the ratio of the two 

measurements, together with Kendall's rank correlation coefficient for the relationship 

between the ratio and the geometric mean of the two values.  This computation is based on 

log- transformed data, and is not done if there are zero or negative  observations. 

 

A nonparametric accuracy estimator is computed, for use in comparisons of 

screening/diagnostic test results with ordered “gold-standard” ratings.  It estimates the 

probability that the test will correctly rank the members of a random pair of subjects (chance 

expectation = 50%). 

 
Measure of disagreement 
 

The measure of disagreement between two sets of matched numerical observations proposed 

by Costa-Santos et al. (2010) is based on the differences between the paired observations, in 

relation to the magnitude of the larger value in the pair. It is applicable to ratio-scale 

variables (i.e., those where a zero value indicates absence of the attribute) that have positive 



                                    D3.  PAIRED NUMERICAL OBSERVATIONS (NORMALITY NOT ASSUMED) 

74 

values. The measure is applied to the untransformed values. It ranges from 0 (no 

disagreement) to 1 (strong disagreement). 

 

Optionally, a 95% confidence interval is estimated for the measure of disagreement, using a 

bootstrap procedure. This procedure can produce a long delay. 

 

Clustered data  
 

In order to effectively remove the correlation associated with data clustering (which may 

appreciably affect the test results) the program uses a Wilcoxon signed-ranks test, applied to 

the cluster medians. The limitations of this simple method, like those of a test using the 

cluster means (Galbraith et al. 2010), are that the same weight is given to large and small 

clusters, and that the non-use of individual observations may reduce power; computer 

simulations confirm this slight loss of power compared with other, more elaborate, tests that 

take clustering into account. The procedure may not be appropriate if there are very few 

clusters. 

 

In addition, a Wilcoxon signed-ranks test is performed in each cluster, the results are 

combined (using alternative sets of weights), and the heterogeneity of the P-values in the 

various strata is tested. 

 

Nonparametric regression analysis  
 

The nonparametric regression analysis procedure (which assumes interval-scale 

measurements) has the advantage of robustness – i.e., discrepant “outlier” observations have 

a reduced effect.  Estimators of the intercept (alpha) and slope (beta) coefficients in the 

population are computed, with 90, 95, and 99% confidence intervals for the latter 

coefficients.  Computation may be slow for large samples and can be aborted by the user.  

Computation is aborted if the samples are too large for the program to handle. 

 

Three alternative ways of estimating beta are used, depending on the total number of pairs 

and the number of discrepant values.  Two estimators of alpha are computed, and both are 

shown if they differ.  The first estimator is recommended if it cannot be assumed that 

deviations from the regression line are symmetrical, and the second  is recommended if the 

symmetry assumption is tenable. 

 

Monotonic regression analysis is a form of nonparametric regression analysis. It expresses 

the linear relationship between the ranks of the A and B variables. Normality is not assumed. 

The regression equation has the form    

        Rank of B = alpha + beta(rank of A). 

The closer the relationship is to monotonicity, the closer the absolute value of beta is to 1. 

 

Rank correlation coefficients and other measures of association 
 

Kendall's and Spearman's rank correlation coefficients (tau b and rho [with its standard 

error], respectively) are computed.  These have different numerical values but are similar in 

their ability to detect associations (Siegel and Castellan 1988: 251).   

 

Goodman and Kruskal's gamma and Somers' asymmetric D  may be regarded as measures of 

how effectively the rank of a pair of observations with respect to one observation can be 



                                    D3.  PAIRED NUMERICAL OBSERVATIONS (NORMALITY NOT ASSUMED) 

75 

predicted from their rank with respect to the other observation (see Hildebrand, Laing, and 

Rosenthal 1977).  The D statistics are appropriate when one of the observations is clearly the 

dependent one, e.g. one that comes later in time; Dxy is appropriate when A is dependent, 

and Dyx when B is dependent. 

 

Tau, Kruskal's gamma, and Somers' D depend on a comparison of the ranks of the paired 

observations.  All possible pairs are taken into account in the computation of tau, whereas 

pairs that tie are disregarded in the calculation of gamma, and pairs that tie with respect to 

one (the independent) observation are omitted from the computation of Somers' D.  Tau is the 

geometric average of Dxy and Dyx. 

 

A conservative (“outside”) 95% confidence interval is estimated for tau.  For small samples 

this estimate may be inordinately wide 

 

METHODS 
 

If zero values are encountered, 1 is added to all values before log-transforming them. At least three pairs of 

observations must be entered.   

 
Comparison of the paired observations 
 
The estimation of the median difference and its confidence intervals is described by Campbell and Gardner 

(2000).  For 25 or fewer pairs, the program uses critical values provided in Table 18.6 of Altman et al. (2000); 

for larger samples, it uses the formula provided by Campbell and Gardner (2000: 42).  

 

The median ratio of the two values in the population is estimated in the same way, after log-transforming the 

observations.  The results that are displayed are the exponents of the median difference computed from log-

transformed values) and its  confidence limits. 

 

A confidence interval for the proportion that has higher values in one set is based on the binomial sign test for 

two dependent samples (Sheskin 2007: 813); it is appropriate if the sample is not small (since the procedure 

uses a normal approximation). 

 
The permutation test assumes that under the null hypothesis the differences between paired observations are 

equally likely to be positive or negative.  Taking each of these possibilities for each pair, the sum of the 

differences is computed for each possible combination of findings.  The P-value is the proportion of these 

outcomes that are as extreme as, or more extreme than, the outcome in the actual observations.  The procedure 

is explained by Siegel and Castellan (1988: 95-100). 

 

The Wilcoxon signed-ranks test uses  the formula provided by Siegel and Castellan (1988: 92, formula 5.5), but 

allowing for the effect of ties on the variance by replacing the denominator (as suggested by Sprent 1993: 53 

and Mehta and Patel 1991: 7-10) by √∑[Si] / 4), where Si = the square of the rank of the difference between 

paired observations.  Nondiscrepant pairs are ignored.  If there are fewer than 20 pairs, significance is appraised 

by using critical levels for one-tailed P = .05, .025, .01, .005, .0025, and .0005 (derived from Siegel and 
Castellan 1988: Table H; and Zar 1998: Table B.12).  If the sample is larger a normal approximation is used, 

with allowance made for ties 

 

The formula for the skewness index is  

  abs[(H – M) – (M – H)] / (H - L) 
where M is the median of the observed intra-pair differences  

 H is their top decile  
 L is their lowest decile.   

The deciles are  determined by the methods explained by Zar (1998: 26-27).  Pairs with no discrepancies are 

taken into account in the computation of the median difference and the skewness index, but not in the 

significance test. 
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If stratified data are entered, the one-tailed Wilcoxon signed-ranks tests in the separate strata are combined by 

averaging their signed z values (Stouffer et al. 1949, p. 45; DeMets 1987).  Three different sets of weights are 

used for this purpose – weighting  the test results equally, by the sample sizes in the strata, and by the square 

roots of the sample sizes.  In addition, a heterogeneity test is performed, comparing the P-values in the strata, 

using the formula (Wolf 1986: 45): 

chi-square (k - 1 d.f.) = ∑(Zi - MeanZ)
2 

where  k = number of strata, 

Zi = z value in stratum i 
MeanZ = mean z value. 

 

Hollander's test for bivariate symmetry is described by Hollander and Wolfe (1999: 94-104). 

 

The sign test is an exact binomial test with a binomial probability of 0.5 (Siegel and Castellan 1988: 80-83; 

formula 4.2). 

 

Hodges-Lehmann procedure: 

 

The differences between the values of cases and controls are calculated in the n matched pairs. As described by 

Han (2008), each difference is then compared with each other difference, and for each of these m = n(n -1 )/2 

comparisons of two values, the mean of the pair of differences (Walsh value) is computed. 
The m means are then ranked in ascending order, and their median is determined.  This is the point estimate of 

the Hodges-Lehmann median difference between cases and controls. 

 

If  n <= 50, a value R corresponding to the value of n  is obtained from  Table A12 of Conove r (1999: p. 545), 

using the W0.005, W0.025, and W0.05 column for the 90%, 95%, and 99% confidence intervals respectively. The 

lower confidence limit is the Walsh value whose rank is R in the series, and the upper confidence limit is the 

Walsh value whose rank is R from the upper end of the series, 

 

If  n  > 50, confidence intervals are estimated by a large-sample approximation (Hollander and Wolfe 1999: 

132-133, using the formulae provided by Han (2008), but with a correction for tied ranks (Unistat Statistics 

Software).  The lower confidence limit is the Walsh value whose rank is R in the series, where R = .za./.b 
rounded up to the nearest integer), and the upper confidence limit is the Walsh value whose rank is R from the 

upper end of the series, 

where z = -1.645, -1.96, or -2.5767 (for 90%, 95%, or 99% limits respectively) 

a = √ [n(n + 1)(2n + 1) / 24 - Tee / 48]   

b = n(n + 1) / 4 
n = number of matched sets 

Tee = the sum of  (t i
 3
- t i) 

t i = the number of ties in each set of tied ranks 

 
The correction for ties (Tee / 48) in calculating a is omitted if it reduces a to zero or a negative value. 

 

 

Measures of agreement 
 
The significance test for the correlation coefficient uses Hotelling's modified z transformation (Sokal and Rohlf 

1981: 583-587) if N < 30. 

 

The concordance correlation coefficient is computed by formula 19.76 of  Zar (1998: 409), and its  confidence 
intervals are based on variance formula 2 of Lin (1989), as corrected by Lin  (2000).  [Version 1.14 and earlier 

versions of PAIRSetc used Zar’s formulae, which yield slightly different results.]   Confidence intervals are not 

computed if the correlation coefficient is 1 or –1, or if its estimation requires division by zero. 

 

Approximate 95% limits of agreement are computed by a nonparametric procedure described by Bland and 

Altman 1999. They are determined by excluding the lower and upper 2.5% of the observed distribution of 

differences.  Their confidence intervals  are based on confidence intervals for the relevant quantiles (Campbell 

and Gardner 2000: 39).  They should be regarded as rough approximations, both because the method of 

computing confidence intervals for the quantiles assumes a normal distribution, and because when one 

confidence limit (lower or upper) falls outside the observed range of differences, it is arbitrarily placed at the 
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same distance from the point estimate as the other confidence limit.  The 95% limits of agreement for the ratio 
of the two measurements are computed in the same way, using log-transformed data. 

 

The nonparametric  accuracy estimator is based on formula 1 of  Obuchowski et al. (2004), but with a 

modification to allow for tied observations.  The denominator in the formula, n(n – 1), is reduced by T, 

where T =∑[ ti(ti – 1)] 
 ti = number of subjects with a specific constellation i of  findings 

The estimator is not computed if  both sets of observations show no variation. 

 

Measure of disagreement 
 
The formula for this measure (Costa-Santos et al. 2010) is 

 ∑Li  / n 

where Li = log{[ai - bi| / max(ai,bi)] + 1}.log(2) 
 ai and bi are the observations in pair i  

 n = the number of pairs of observations 

If ai and bi are equal, Li is taken as 0. 

 

The measure is not computed if any ai or bi is negative, or if there are over 500 sets of matched observations. 

 
The confidence interval is obtained by a bootstrap procedure, using the basic percentile method (Efron 1981, 

Efron and Gong 1983) as described by Sheskin (2007: 532-536). The approximate 95% limits are the (2.5)th 

and (97.5)th percentiles of the distribution of the measures of disagreement (computed by the above method) in 

1000 random samples of the same size as the original sample, each drawn (with replacement) from the values in 

the original sample. Because of resampling, repetitions of the procedure may yield slightly different results. 

 

The random sampling in this bootstrap procedure uses a pseudo-random number generator described by 

Wichman and Hill (1985), which derives each number in turn from three seed numbers that it modifies for 

subsequent use.  Initial values for the seed numbers are generated by Delphi's inbuilt random-number 

procedures, namely RANDOMIZE, using the system clock, and RANDOM, which generates three random 

numbers from which the required seed numbers are computed.  Delphi's RANDOM procedure is augmented by 
an additional randomizing shuffle, using the algorithm of Bays and Durham, as described by Press et al. (1989: 

215-217). The formula for each selection is 

trunc(RM) + 1 

where  R is a random number in the range 0 < R < 1 

M = the number of candidates.   

 

Clustered data 
 
If clustered data are entered, a Wilcoxon signed-ranks test based on the cluster medians is employed. This uses  

the formula provided by Siegel and Castellan (1988: 92, formula 5.5), but allowing for the effect of ties on the 

variance by replacing the denominator (as suggested by Sprent 1993: 53 and Mehta and Patel 1991: 7-10) by 

√∑[Si] / 4), where Si = the square of the rank of the difference between paired observations.  Nondiscrepant 

pairs are ignored.  If there are fewer than 20 pairs, significance is appraised by using critical levels for one-
tailed P = .05, .025, .01, .005, .0025, and .0005 (derived from Siegel and Castellan 1988: Table H; and Zar 

1998: Table B.12).  If the sample is larger a normal approximation is used, with allowance made for ties  

 

The one-tailed Wilcoxon signed-ranks tests in the separate clusters are combined by Stouffer’s method (Stouffer 

et al. 1949, p. 45; DeMets 1987) to produce overall one-tailed tests.  Three alternative sets of weights are used 

for this purpose – weighting  the test results equally, by the cluster sizes, and by the square roots of the cluster 

sizes.   

 

The heterogeneity test comparing the P-values in the strata uses the formula (Wolf  1986: 45): 

chi-square (k - 1 d.f.) = ∑(zi - MeanZ)
2
 

where  k = number of strata, 

zi = z value in stratum i 

MeanZ = mean z value. 
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Nonparametric regression analysis  
 

The nonparametric regression analysis procedures are described by Daniel (1995: 622-625), Sprent (1993: 195-

202) and Sen (1968).   

 

Three alternative ways of estimating beta (the slope coefficient) are used, depending on the total number of 
pairs and the number of discrepant values.  If up to 30 pairs of observations are entered, Theil's estimator (Theil 

1950) is computed by a method described by Sprent (1993: 195-198).  If more than 30 pairs are entered, Sen's 

method (Sen 1968) is used when possible.  The program cannot cope with Sen's method if there are more than 

146 pairs of observations with different values of the independent variable, and it then employs the abbreviated 

Theil method (Sprent 1993: 198-202), which uses a systematic sample of the data. For the Sprent and 

abbreviated Theil methods, which (unlike Sen's method) assume distinct values of the independent variable, the 

program treats tied observations as if they were not identical by imputing differences of (alternately) 0.000001 

or -0.000001.      

 

The point estimate of beta (b) is the median value of bij, where  bij = (yj - yi) / (xj - xi) for each pair of values 

of the independent variable x (xi and xj) and the corresponding values of the dependent variable y (yi and yj). 

Using Sprent's method, bij is calculated for all of the N(N-1)/2 possible pairs of values; zero values of (x-xi) are 

changed to 0.000001 or -0.000001 (alternately).  In Sen's procedure bij is calculated only if (xj-xi) is not zero.  In 

the abbreviated Theil procedure the N pairs of observations are arranged with the values of the independent 

variable in a monotonically rising sequence, and each of the first N/2 pairs is then linked with the pair situated 

N/2 positions further along the array; bij is computed only for these linked observations; zero values of (xj-xi) are 

changed to 0.000001 or -0.000001.   

 
Confidence intervals for beta are obtained from an array of  values of bij in order of increasing magnitude.  Sen's 

method (Sen 1968) uses critical values provided by a large-sample formula based on a variance estimate 

corrected for ties, and Sprent's method (Sprent 1993: 199-202) uses critical values based on the critical value for 

Kendall's tau for significance at nominal 10%, 5%, and 1% levels in two-tailed tests, obtained from Siegel and 

Castellan (1988: 363, TableRII) and Sprent (1993: Table IX).  Approximate confidence intervals are estimated 

in a similar way in the abbreviated Theil procedure, using critical values based on formula 2.3 in Sprent (1993: 

34). 

 

Two estimators of the alpha coefficient are computed (Dietz 1989; Daniel 1995: 623-624).  The first is the 

median of the (yi - b.xi]) terms for the N pairs of observations, and the second (Daniel 1995: 623-624) is the 

median of the averages of the (yi - b.xi) terms calculated for each of the pairwise combinations of observations.  

The second estimator of alpha  is not calculated if the abbreviated Theil procedure is used. 
 

The monotonic regression analysis uses formulae 1-3 of Conover (1999: 244). 

 

Rank correlation coefficients and other measures of association 
 

The computation of tau, gamma, and Somers' D is based on S, the difference between the numbers of 

concordant and discordant pairs, as explained by Kendall (1970: 45-46) and Agresti (1984: 157-159).   

 

The formula for tau makes allowance for tied observations (Siegel and Castellan 1988: 249, formula 9.10).  If 

the number of pairs N > 30, the significance of S is tested by a large-sample method whose use Agresti (1984: 

180) suggests if the numbers of concordant and discordant pairs both exceed 100.  If this condition is not met 
the program reports P as approximate.  The formula is 

Z = (S - CC) / √V   
where    V = variance of  S, making allowance for tied ranks (Kendall 1970: formula 4.3) 

As recommended by Kendall (1970:54-58), CC = 1 unless one variable has only two values and the other has 

tied ranks, in which case 

CC = [(2N - TF - TL)  /  Intervals]  / 2                 
where Intervals = the number of different ranks for the non-dichotomous variable, minus one 

TF and TL = ties involving the first and last ranks (respectively) of the non-dichotomous variable 

A conservative ("outside") 95% confidence interval is estimated for tau, using formula 4.12 of  Kendall (1970: 

64). 
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Gamma is calculated by a formula provided by Siegel and Castellan (1988: 292, formula 9.32).  If N > 30, the 

significance test for S (see above) is used as a test for gamma. 

 

Somers' Dxy and Dyx are calculated by Siegel and Castellan's formulas 9.41 and 9.42 (1988: 304-305).  

Significance is tested by a Z test (Siegel and Castellan 1988: 309, formula 9.47), based on the variance 

computed by Siegel and Castellan's formula 9.45. 
 

Spearman's rho is computed by a formula that takes account of tied ranks (Siegel and Castellan 1988: 241, 

formula 9.7).  It is not calculated if numbers are too large for the program to handle.  A large-sample 

approximation is displayed as the S.E. of rho, namely √[1 / (N – 1)] (Hollander and Wolfe 1999, formula 

8.72). The t-test for the significance of rho (Siegel and Castellan 1988: 243, footnote), used if N > 30, is based 

on the null variance.  An approximate 95% confidence interval (Zar 1998: 392) is estimated if N is 10 or more 

and rho is 0.9 or less, based on the Fisher z transformation 

  z = 0.5ln[(1 + rho)  / (1 - rho)]    
The confidence limits for rho {Fieller, Hartley and Pearson (1957, 1961) are  

exp[2(z ± 1.96SEz) - 1] / exp[2(z - 1.96SEz) + 1] 
where  SEz = √[1.06 / (N - 3)]. 

 

If there are 30 or fewer pairs, the significance of tau is appraised by using critical levels for one-tailed P = 0.05, 

0.025, 0.01, and 0.005 (Siegel and Castellan 1988: Tables RI and RII), and the significance of rho by using 
critical levels for one-tailed P = 0.05, 0.025, 0.01, 0.005, and 0.001 (Siegel and Castellan 1988: Table Q).  If N 

> 30, a Z test is used for tau and gamma, and a t-test for rho.  The Z test is appropriate for large samples, and P 

is reported as "approximate" if criteria suggested by Agresti (1984: 180) are not met. 
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D4.  ANALYSIS OF PAIRED SURVIVAL DATA 
 

This module is appropriate for the analysis of trials and follow-up surveys that study paired 

survival data, e.g. in paired individuals or in the two eyes of the same subjects. 

 

A survival time (“time to event”) is the number of time units (usually days or months) from 

the start of observation until the occurrence of a specified end-point event (such as death, the 

onset of a disease or complication, recovery from a disease, or return to work) or (if the event 

has not occurred) until withdrawal from observation.  The main reasons for withdrawal, or 

censoring, are loss of contact, circumstances that dictate removal from the study, and 

conclusion of the study.   

 

Each pair of survival times (A and B) may be entered separately, or (if  specific paired values 

occur more than once) the paired values can be entered with their frequency.   

Censored survival times are entered by appending “+”, e.g .by entering “37+”.  Up to 500 

pairs of survival times may be entered 

 

To obtain results that are relevant to specific periods that are of interest, these periods can be 

entered  (e.g., 24 months, to obtain information about 2-year survival). 

 

The program provides a Kaplan-Meier life-table analysis for each group of observations 

(cumulative survival proportions with their 95% confidence intervals, median and mean 

survival times, and the incidence rate of the event), comparisons of survival proportions, 

the hazard ratio (with 95% confidence intervals), the  trends in the early and later periods 

of follow-up, and tests comparing the survival distributions (Prentice-Wilcoxon and 

Gehan tests). 

 

 

Cumulative survival proportions 
 
For each group of observations, the cumulative survival proportions (expressed as 

percentages) at each survival time entered are estimated by the Kaplan-Meier procedure.  

Cumulative survival proportions are also computed for any survival times that have been 

specified as of special interest, with their approximate 95% confidence intervals; these are 

large-sample limits, and Rothman and Greenland (1998: 289-90) recommend their use only if 

at least five events were observed and there are at least five survivors under observation at 

the time of the calculation; a warning is displayed if these conditions are not met. 

 

The step-by-step survival proportions that are reported provide raw data for the construction 

of survival curves, consisting of horizontal lines with vertical steps whenever the survival 

proportion changes.   

 

Median and mean survival times 
 

Where possible, median and mean survival times are reported for each group of observations. 
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Whether survival times are censored or not, the median survival time is defined as the time at 

which the cumulative survival probability drops to 50% or below.  An approximate standard 

error and 95% confidence interval are reported; these values may be inaccurate if the sample 

is small (Machin and Gardner 2000: 97)..  

 

If the survival probability is not precisely 50% at the reported median survival time, an 

alternative median is also reported, based on linear interpolation between the times straddling 

the 50% mark. 

 

The program also computes the median survival time expected if the distribution is 

exponential; if this is very different from the observed median, the assumption of 

exponentiality can be rejected.. 

   

The mean survival time is displayed, with its 95% confidence interval.  If there are censored 

survival times, these values are estimates. 

 

Incidence rate of the event 
 

The average rate of events and its confidence intervals are estimated from the mean survival 

time and its confidence limits.  If any survival times are censored, the rate is an estimate. 

 

Comparisons of survival proportions 
 
For specific survival times that have been specified as being of special interest, the program 

displays the difference between the survival proportions in the two groups of observations, 

and the ratio of these proportions, with their approximate 95% confidence intervals.  The 

confidence intervals should be used with caution if the survival times were selected a 

posteriori, after examination of the data (Altman 1991: 376). 

 

Hazard ratio 
 
The hazard ratio, which is similar to a relative risk, expresses the relative survival experience 

of the two groups.  The program also displays the values (in each group of observations) on 

which the hazard ratio is based – the number of observed events and the “extent of exposure” 

or “expected events”, and their ratio. 

 

Trends in the early and later periods of follow-up  
 

As a simple indication of possible time-related differences between the survival distributions, 

the program summarizes the change in the cumulative survival proportion in each group of 

observations, in the early and later segments of the follow-up period (usually using the 

median survival period for Group A as the cutting-point).  The change is expressed as the 

drop in the survival percentage.   

 

Comparison of the changes may point to trends that are different in the two groups or time 

periods.  Differences in trend in the two periods may be obscured in the overall results.   
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Number needed to avoid one event 
 
For use in studies in which the events are avoidable, the program reports the number of 

individuals who are needed in the group with a longer survival time, in order to avoid a 

single case.   

 

Tests comparing the  survival distributions  
 
Two tests are performed: the Prentice-Wilcoxon test (Prentice 1978) and the Gehan test 

(Gehan 1965).  Both tests allow for censored observations.  One-tailed and two-tailed P 

values are shown. 

 

When data are heavily censored, great differences can exist between the results of the two 

tests (O’Brien and Fleming 1987). 

 

Computer simulations indicate that the Prentice-Wilcoxon test is more powerful in most 

situations, but the Gehan test may be more powerful if the survival times follow an 

exponential distribution (Woolson and O’Gorman 1992). 

 

 

METHODS 
 

Cumulative survival proportions 
 

Cumulative survival proportions are estimated by the Kaplan-Meier technique (Kaplan and Meier 1958; 

Armitage et al. 2002: 575-576; Machin and Gardner 2000: 94-96).  

 
95% confidence intervals for survival proportions at specific selected times are computed from the estimated 

variance of the logit of the proportion, using Greenwood’s formula  (Rothman and Greenland 1998: 289-90).  

 

Median and mean survival times 
 

The median survival time is defined as the time at which the cumulative survival probability drops to 50% or 

below.  Its approximate standard error and 95% confidence interval are computed  by the formulae provided by 

Machin and Gardner (2000: 97-98), based on the survival times at which the survival probabilities reach or 

cross the 45% and 55% levels, or if these probabilities are equal, the 40% and 60% levels.  The effective sample 

size required for the calculation is the total sample size minus the number censored before the median survival 

time (Machin and Gardner (2000: 94).  If the sample is small, the results are unreliable. 
 

If the survival probability is not precisely 50% at the reported median survival time, an alternative median is 

also reported, based on linear interpolation between the times straddling the 50% mark (Selvin 1996: 374).   

  

The median survival time expected if the distribution is exponential is the sum of the survival times (whether 

censored or not) divided by the number of events  (Altman 1991: 385). 

 

The mean survival time and its confidence intervals are computed in the usual way if no survival times are 

censored.  Otherwise, a nonparametric estimate of the mean is computed, based on formula 11.29 of Selvin 

(1996: 371); its standard error is computed by formula 11.31 and used for interval estimation; for this purpose, 

the longest survival time is treated as uncensored, even if it is censored. 

 
A mean/median survival time is also computed, based on the assumption that the distribution is exponential 

(Selvin 1996, formula 11.19; Altman 1991: 385).  Its standard error is computed by Selvin's formula 11.20. 
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Incidence rate of the event 
 

Since (in a closed population) an incidence rate is the reciprocal of the average time until occurrence of the 

event (Rothman 1986: 29; Morrison 1979), the reciprocals of the mean survival time (or the estimate of the 

mean survival time) and its confidence limits are used as estimates of the average rate of events and its 

confidence limits.   
 

Comparisons of survival proportions 
 

For comparisons of survival proportions, the estimation of the variances and confidence intervals of the 

differences and ratios is described by Rothman and Greenland (1998, 291-292).  Formulae 16-15 and 16-16 are 

used, based on. the estimated variances of the logits of the proportions (Rothman and Greenland 1998, pp 289-

90).  The proportions are treated as independent. 

 

Ratio of median survival times 
 

The computation of a confidence interval for the ratio of the median survival times in the two groups (Simon 

1986), on the assumption that the survival times have an exponential distribution, is described by Altman (1991: 
384-385).  The median  survival times used for this purpose are those at which the cumulative survival 

probability drops to 50% or below. 

 

Hazard ratio 
 

The program computes the Pike hazard ratio estimator (Pike 1972).   

 

Trends in the early and later periods of follow-up 
 
Changes in the survival percentage in each group of observations are reported, in the early and later periods of 

follow-up.  The cutting-point used for this purpose is based on the median survival period for Group A (or, if 
this median is not reached, on the point at which the cumulative survival proportion drops to 60%).  The longest 

survival time entered determines the end of the later period.  Where possible, the interval defined for Group A is 

applied to Group B also.  Linear interpolation is used where necessary.   

 
Number needed to avoid one event 
 

The number of individuals who are needed in the group with a longer survival time in order to avoid a single case is 
computed from the difference between survival proportions and its estimated variance (Altman and Anderson 1999),  

 

Tests comparing survival distributions  
 
The Prentice-Wilcoxon and Gehan tests are done in accordance with the detailed procedures set out by Woolson 

and O'Gorman (1992).  For the Prentice-Wilcoxon test,  the delta value for each pair of survival times is 

multiplied by the frequency of the combination, if it is more than 1. 
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D5. ASSESSMENT OF REGRESSION TO THE MEAN 

 

This module assesses the effect of regression to the mean (RTM), for use in studies in which 

subjects selected because of their extreme values (high or low) are measured again later to 

appraise change  Once known, the expected change due to RTM can be compared with the 

change actually observed, to see to what extent RTM can explain the observed difference. 
 

The procedure assumes a normal or lognormal distribution. 
 

The cut-point used for selecting subjects for inclusion in the sample must be entered, together 

with the mean value and S.D. in the population from which they were drawn.   Optionally (to 

allow for aging or a secular change), the population mean and S.D. at the time of the second 

measurement can be added.  If the distribution is lognormal, the required entries are the log 

of the cut-point, and means and S.D.s of log-transformed values. 
 

The program computes the regression-to-the-mean effect, i.e. (if the distribution is normal) 

the expected difference between the mean baseline and mean second value or (if the 

distribution is lognormal) the expected ratio of the mean second value to the mean baseline 

value.  The computed baseline mean is also displayed, for comparison with the observed 

baseline mean (a discrepancy suggests a skewed distribution). 

 

 
 

Regression-to-the-mean effect 
 

If there is of random variation, the second measurement in a follow-up study of subjects 

selected because of their extreme values will always tend to be less extreme than the first.  In 

trials, RTM effects may be confused with treatment or placebo effects (Barnett et al. 2005, 

Morton and Torgerson 2005). 
 

Regression towards the mean depends not only on the cutpoint used to determine inclusion in 

the sample and on the distribution (mean and S.D.) in the population, but also on the 

correlation (in the population) between repeated measurements of the same individuals.  The 

expected changes due to RTM are therefore displayed in a table that lists alternative values, 

depending on the correlation coefficient (ranging from 0.025 to 0.975).  Choice of an 

appropriate coefficient requires external data;  the correlation usually becomes attenuated as 

the interval between measurements increases.  For cholesterol values, correlation coefficients 

of 0.7 or higher have been reported for measurements taken a year apart (Yudkin and Stratton 

1996). 
 

A method sometimes used to reduce the effect of regression towards the mean is to determine 

the subject's inclusion in the study sample not  by using a single baseline measurement, but 

by using the mean of two or more baseline measurements.   The table therefore displays 

alternative RTM values, for 1, 2, 3, or 4 baseline measurements.  Use of more than 4 

measurements brings little benefit (Yudkin and Stratton 1996). 
 

If a second population mean and S.D. are not entered, the computation assumes that there is 

no change in the population distribution. 
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METHOD 
 

The program estimates the effect of regression to the mean by the formula provided by Davis (1976: formula 3); 

also Yudkin and Stratton (1996) and Barnett et al. (2005).  It uses a modification that allows for a change in the 

population values between the two measurements, as described by Chinn and Heller (1981).  It also uses  

modifications that are appropriate if the baseline value is the mean of 2, 3, or 4 measurements, as described by 

Davis (1976) and  Yudkin and Stratton (1996). 
 

If a lognormal distribution is assumed, the computation is based on the logs that are entered.  The RTM effect 

that is displayed, namely the ratio of the later mean to the baseline mean, is the antilog of the RTM effect 

computed from the logs (Bland and Altman 1996a). 

 

Some values may not be calculated, or the whole analysis may be skipped, if the cut-point is excessively 

extreme. 

 

The computed baseline mean that is reported is based on single baseline measurements (Davis 1976: formula 2). 
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D6. ADJUSTMENT FOR REGRESSION TO THE MEAN 

 

This module provides significance tests that adjust for the effect of regression to the 

mean (Mee-Chua tests), for use in studies in which subjects selected because of their 

extreme values (high or low) are measured again later to appraise change.  

 

Either individual data or summary data (sample size, means and standard deviations) may be 

entered. If the mean in the population from which the sample was drawn is not known, or if 

the correlation between the two sets of measurements is not known, the program provides a 

sensitivity analysis, computing P values for a wide variety of scenarios. 

 

If the population mean is not known, the program also reports the lowest possible adjusted 

P value and the population mean to which it applies, and the range of population means for 

which the test would be significant, using the extended Mee-Chua procedures proposed by 

Ostermann et al. (2008). 

  

If individual data are entered, a paired t test (not controlling for the regression-to-the-mean 

effect)  is also performed, for comparison with the above test. 

  

 
 
Regression-to-the-mean effect 
 

If there is random variation, the second measurement in a follow-up study of subjects 

selected because of their extreme values will always tend to be less extreme than the first.  In 

uncontrolled or inadequately controlled trials, this regression-to-the-mean (RTM) effect may 

be confused with a treatment or placebo effect (Barnett et al. 2005, Morton and Torgerson 

2005). The degree of regression towards the mean depends on the criterion used to determine 

inclusion in the sample and on the distribution (mean and S.D.) in the population from which 

the sample was drawn, and finds expression in the correlation between repeated 

measurements of the same individuals.   
 

A test proposed by Mee and Chua (1991) is used. This test, which is based on a linear 

regression model, requires information on the mean value in the population and the 

correlation between the two sets of values. The test may be regarded as a replacement, 

removing the RTM effect, for a paired t-test. It  assumes that distributions are normal, that 

there was no change in the population mean and S.D. between the times of the two 

measurements, that the correlation is constant over the whole range of values, and that effects 

are additive. 

 

This test has been formulated more simply by Ostermann et al. (2008), who extend it to a 

situation where the population mean is unknown, by suggesting that it be used systematically 

over a range of reasonable means, and by providing formulae to determine the lowest 

possible adjusted P value and the population mean that would give rise to this lowest P 

value, and the range of population means for which the test would be significant. 

 

If the population mean is not available, the program reports the lowest possible P value and 

the population mean associated with this P value, and the range of population means that 
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would be associated with a significant test result (i.e., with a P value less than 0.025 in a one-

sided Mee-Chua test of the null hypothesis versus an alternative in the direction of the 

observed difference between the means of the two sets of values). The program also applies 

the test to 11 hypothetical situations, using alternative evenly-spaced population means 

ranging from half to double the mean of the first set of measurements.  

 

If the correlation coefficient is not available, but the population mean is, the test is performed 

nine times, using alternative correlation coefficients of 0.9, 0.8, … 0.1.  

 

If neither the population mean nor the correlation coefficient is available the test is performed 

99 times (nine postulated correlation coefficients, with eleven evenly-spaced population 

means). For each value of the correlation coefficient, the lowest possible adjusted P value 

and the associated population mean are reported, as well as the range of population means for 

which the test would be significant. 

 

When appraising the findings, postulated population means that are not plausible should be 

ignored. Also, it should be kept in mind that regression to the mean can contribute to the 

difference between the means only if the population mean is below the first mean (if the 

second mean is  lower than the first), or above the first mean (if the second mean is higher 

than the first).   

 

Scrutiny of the results to determine the plausibility of scenarios that show significant results 

may permit judgments on the possibility of a true change, and facilitate “separating the wheat 

from the chaff in situations when one has to interpret the results of uncontrolled studies” 

(Ostermann et al., 2008). 
 

METHOD 
 

The formula used for the Mee-Chua  test is equation 4 of Osterman et al . (2008), with the covariance (sY1Y2) 

replaced by rs1s2, where r is the correlation coefficient and s1 and s2 are the standard deviations of the two 

samples. The lowest possible adjusted P value is derived from the t value computed by equation 7 (with n – 2 

degrees of freedom), and the associated population mean by equation 6. 

 

The range of population means for which the test would be significant is estimated  by a method proposed and 

explained by Osterman et al., using the following formulae (Luedtke R, personal communication) which 

because of their length were not printed in their paper. The formulae provide μ1 and μ2, which represent the 

points (along a spectrum of possible population means) that separate significant one-sided test results (in either 
direction) from nonsignificant results. Y1 and Y2 are the two sets of measurements. The program assumes that the 

population mean cannot be less than 0.  
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The formula for the paired t test will be found in most statistics textbooks, e.g. Altman (1991), p. 191. 

 
If individual measurements are entered, the maximum permissible number of pairs is 800. 
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E.  COMPARISON OF SUBJECTS WITH TWO OR MORE 
MATCHED CONTROLS (“YES-NO” VARIABLE) 

 

This module is appropriate for the analysis of case-control studies, clinical trials and cohort 

studies in which each index subject (each case, experimental subject, or individual exposed 

to a risk or protective factor) has a fixed number (2-20) of individually matched controls, and 

the dependent variable is dichotomous (“yes-no”), e.g. “yes” = exposure to a risk factor (in a 

case-control study), the success of a treatment, or the presence of a disease (in a cohort 

study).  It compares the findings in the index subjects and their matched controls. 

 

The program refers to index subjects as “cases”.  The number of controls per case must be 

entered.  Then each set of matched observations can be entered in a separate line, or sets with 

the same findings can be entered together, with their frequency.  The required entries for each 

pattern of findings are 0 (“no”) or 1 (“yes”) for the “case”, and the number of  matched 

controls with “yes”. 

 

If the data are stratified, enter each stratum in turn.  Click on “All strata” whenever 

combined results are required.   

 

The program provides tests for the difference between the “cases” and their controls (exact 

Fisher's and mid-P tests, Mantel-Haenszel test, and Walter's test for binary data), the odds 

ratio (maximum-likelihood and Mantel-Haenszel estimates), and kappa. 

 

If stratified data are entered, the Walter’s tests in the separate strata are combined, the 

heterogeneity of the P-values in the strata is tested, and an overall kappa is computed . 

 

 

Tests for the difference 
 

The program provides exact Fisher's and mid-P tests, the Mantel-Haenszel test, and Walter's 

test for binary data (with and without a continuity correction).  

 

If stratified data are entered, the Walter's tests in the separate strata (continuity-corrected) are 

combined by averaging their z values (Stouffer et al. 1949: 45; DeMets 1987) and computing 

an overall P that controls for the stratifying variables.  P-values are computed in three ways, 

weighting the strata by different methods: weighting them equally, by sample sizes (the 

number of pairs), and by the square roots of the sample sizes. In addition, a test is done for 

the heterogeneity of the P-values in the strata (Wolf 1986:  45). 

 

Odds ratio 
 

Maximum-likelihood and Mantel-Haenszel estimates of the odds ratio are computed, with 

exact (Fisher's and mid-P) and approximate confidence intervals.     In occasional extreme 

instances, computational problems prevent the use of exact methods for the calculation of 

confidence intervals for the odds ratio. Approximate confidence intervals for the maximum-

likelihood estimate of the odds ratio are shown only if exact intervals are not computed. 

 

Jewell's low-bias estimator of the odds ratio (Jewell 1984) is also displayed.  This serves to 

draw attention to the tendency for the odds ratio in a sample, especially a small one, to 
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overestimate the true odds ratio in the population represented.  A disadvantage of the 

estimator is that it is affected by the direction of computation; its value when the number of 

case: “yes”, control: “no” pairs is the numerator of the ratio is not the reciprocal of its value 

when this number is the denominator. 

 

Kappa 

 

The program computes kappa, which expresses the agreement among all the observations in 

the matched sets, and may serve to express the effectiveness of the matching procedure, since 

it indicates the extent to which the findings in matched sets are more similar than findings in 

individuals from different sets.   

 

The probability of chance agreement is taken into account in the calculation of kappa.  A 

value of 1 indicates perfect agreement  (after allowing for this probability of chance 

agreement) between ratings; 0 indicates no agreement other than what can be attributed to 

chance, and a negative value indicates less than chance agreement.  Fleiss et al. (2003) 

suggest that a value of 0.75 or more indicates excellent agreement, and 0.40 or less indicates 

poor agreement. Cicchetti and Sparrow (1981) divide Fleiss’s 0.40–0.74 group into 0.60–

0.74: good; and 0.40–0.59: fair. Alternative guidelines are: over 0.80, very good agreement; 

0.61–0.80, good; 0.41–0.60, moderate; 0.21–0.40, fair; and 0.20 or less, poor agreement 

(Landis and Koch 1977, Altman 1991).   

 

If stratified data are entered, an overall kappa (weighted by sample sizes) is computed. 

 

 

METHODS 
 
The program can cater for up to 20 controls per case. 
 

Tests for the difference 
 
The computation of exact probabilities uses an efficient algorithm for calculating the coefficients of the 

conditional distribution (Martin and Austin 1991, 1996), using code from David O. Martin's public-domain 

EXACTBB program. 

 
The Mantel-Haenszel chi-square test for matched observations is described by Rothman (1986: 262-263: 

formulae 13-15 and 13-18).  

 
The formula for Walter's test for binary data is formula 2 in Walter (1980); for a continuity-corrected test, 0.5 is 

subtracted from the absolute value of the numerator.   
 

If stratified data are entered, the Walter's tests in the separate strata (continuity-corrected) are combined by 

averaging their  z values (Stouffer et al. 1949, p. 45; DeMets 1987).  Three different sets of weights are used for 

this purpose – weighting  the test results equally, by the sample sizes in the strata, and by the square roots of the 

sample sizes.  In addition, a heterogeneity test is performed, comparing the P-values in the strata, using the 

formula (Wolf 1986: 45): 

chi-square (k - 1 d.f.) = ∑(Zi - MeanZ)
2 

where  k = number of strata, 

Zi = z value in stratum i 

MeanZ = mean z value. 
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Odds ratio 
 
Rothman (1986) explains the computation of maximum-likelihood (pp 254-255, 257-258) and Mantel-Haenszel 

point estimates (pp 256, 258: formulae 13-7 and 13-9) of the odds ratio and their approximate confidence 

intervals (pp 268-270: formulae 13-37 and 13-38, and pp 273-275).  The computation of exact intervals uses an 

efficient algorithm for calculating the coefficients of the conditional distribution (Martin and Austin 1991, 
1996), using code from David O. Martin's public-domain EXACTBB program. 

 

The low-bias estimator of the odds ratio is computed by Jewell's formula (Jewell 1984: 431), whether the 

number of controls per case is fixed or variable.  If there is one control per case the estimator is  

b/(c + 1),  
where  b = number of “case Yes, control No” pairs 

c = number of “case No, control Yes” pairs. 

 
Kappa 
 
Kappa is calculated by formulae 18.10 to 18.12 of Fleiss et al. (2003). To test the null hypothesis by dividing 

kappa by its standard error, the standard error (for an underlying zero value of kappa) is calculated by formula 

18.13. The hypothesis that agreement is better than chance is tested by formula 18.14 or 18.35. 

 
If stratified data are entered, an overall kappa (weighted by sample sizes) is computed. 
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F.  COMPARISON OF THREE OR MORE MATCHED 
SAMPLES (“YES-NO” VARIABLE) 

 

This module compares the findings in 3 to 10 related samples (each observation being 

matched with an observation in each other sample) where the dependent variable is 

dichotomous (“yes-no”).  The data may be sets of observations in matched individuals, or 

separate sets of observations in the same individuals.  The 3 to10 samples can, but need not, 

lie in an ordered sequence (e.g. in a trial comparing different doses). 

 

The program may be used, for example, to analyse a clinical trial in which matched subjects 

receive 3 to10 different treatments, or one in which each subject receives 3 to10 different 

treatments, or one in which each subject receives the same treatment under 3 to10 different 

conditions, or an observational study comparing matched subjects who have different degrees 

of exposure to a risk, or are measured under different defined circumstances, or are appraised 

by different clinicians or interviewed by different interviewers, or a study in which the same 

individuals are observed under different specified conditions, or at various specified times, or 

are asked different specified questions.   

 

If the samples lie in an ordered sequence, they should be numbered accordingly.  If there is a 

reference group, it should be entered as sample 1.  The pattern of findings in the members of 

the matched set must be entered, using 0 for “no” and 1 for “yes” (e.g., “0” for the 

observation in sample 1, “1” for the matched observation in sample 2, “0” for the matched 

observation in sample 3, etc.  Matched sets can be entered individually, or sets with the same 

pattern of findings can be entered together, with their frequency. 

 

If the data are stratified, enter each stratum in turn.  Click on “All strata” whenever 

combined results are required.   

 

The program provides tests comparing the matched samples (Cochran’s Q test, Page’s test 

for trend),  pairwise (multiple) comparisons of the samples, odds ratios, and kappa. 

 

If stratified data are entered, the Cochran Q tests and Page tests in the separate strata are 

combined and the heterogeneity of the P-values in the strata is tested. 

 

 
Tests comparing the matched samples 
 

Cochran's Q test, which is an extension of the McNemar test for matched pairs, tests the null 

hypothesis that the probability of a “yes” result is the same in each sample, against the 

alternative that the relative probabilities in the different samples are consistent for all sets of 

related observations; that is, if in one set the probability of “yes” is larger in sample 1 than in 

sample 2, this is so in all sets.  With three samples or small numbers (Tate and Brown 1970) 

a P-value that is near a borderline of significance should be treated with caution; the program 

provides a warning. 

 

Page's test is appropriate if the samples fall into an ordered sequence.  It is a test for the 

presence of a monotonic trend (Page 1963, Siegel and Castellan 1988: 184-188).  The test is 

conservative when applied to dichotomous data, because of the large number of ties 

(Hollander and Wolfe 1999, p. 292). 
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If stratified data are entered, the Cochran Q tests and Page tests in the separate strata are 

combined by Stouffer’s method (Stouffer et al. 1949, p. 45; DeMets 1987) to produce overall 

tests that control for the stratifying variables.  Three different sets of weights are used for this 

purpose – weighting  the test results equally, by the sample sizes in the strata, and by the 

square roots of the sample sizes.  In addition, the heterogeneity of the P-values in the strata is 

tested. 

 

Pairwise comparisons 
 
The proportion of “yes” observations in each sample is compared with the proportion of 

“yes” observations in each other sample. For each comparison, the program displays the 

proportions and their difference (with a 95% confidence interval for the difference), and 

performs a significance test. Alternative P values (two-tailed) are displayed – one that is 

appropriate if there was an a priori hypothesis, and Sidak- and Boniferroni-adjusted values 

that  take multiple testing into account and are appropriate if the comparison was not 

planned.  

 

The Sidak and Bonferroni adjustments both assume that the comparisons are independent. 

The Sidak adjustment is slightly less "pessimistic" (Abdi 2007) - i.e., less severe, less 

conservative, and it has a bit more power than the Bonferroni method. So from a purely 

conceptual point of view, the Šídák method may be preferred). If the assumption of 

independence is false, both procedures "do a good job of protecting against false statements 

of statistical significance, but have less power to detect real differences"  (GraphPad 

Statistics Guide 2013). 

 

Since the confidence intervals and significance tests are based on different procedures, they 

do not completely correspond, especially if the number of observations is small. 

 

Odds ratios 
 

Odds ratios comparing each possible pair of samples are calculated. 

 

Kappa 
 
The program computes kappa, which expresses the agreement among all the observations in 

the matched sets, and may serve to express the effectiveness of the matching procedure, since 

it indicates the extent to which the findings in matched sets are more similar than findings in 

individuals from different sets (Fleiss et al. 2003: 617-618). 

 

The probability of chance agreement is taken into account in the calculation of kappa.  A 

value of 1 indicates perfect agreement  (after allowing for this probability of chance 

agreement) between ratings; 0 indicates no agreement other than what can be attributed to 

chance, and a negative value indicates less than chance agreement.  Fleiss et al. (2003) 

suggest that a value of 0.75 or more indicates excellent agreement, and 0.40 or less indicates 

poor agreement. Cicchetti and Sparrow (1981) divide Fleiss’s 0.40–0.74 group into 0.60–

0.74: good; and 0.40–0.59: fair. Alternative guidelines are: over 0.80, very good agreement; 

0.61–0.80, good; 0.41–0.60, moderate; 0.21–0.40, fair; and 0.20 or less, poor agreement 

(Landis and Koch 1977, Altman 1991).   
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METHODS 
 

Tests comparing the matched samples 
 

Cochran's Q test is described by Siegel and Castellan (1988: 170-174), Daniel (1978: 241-244) and Zar (1998: 

268-270).   

 

Page's test is described by Siegel and Castellan (1988: 184-188). A large-sample approximation (formula 7.10) 
is used, since the available tables of critical values for small numbers are inappropriate in the presence of many 

ties (Hollander and Wolfe 1999:  291-292. 

 

If stratified data are entered, the Cochran Q tests in the separate strata are combined by averaging their  z values 

(Stouffer et al. 1949, p. 45; DeMets 1987).  Three different sets of weights are used for this purpose – weighting  

the test results equally, by the sample sizes in the strata, and by the square roots of the sample sizes.  Also, 

heterogeneity test is performed, comparing the P-values in the strata, using the formula (Wolf 1986: 45): 

chi-square (k - 1 d.f.) = ∑(Zi - MeanZ)
2 

where  k = number of strata, 

Zi = z value in stratum i 

MeanZ = mean z value. 

The Page tests for trend are combined in the same way, but using the signed z values provided by the tests, and 

without excluding sets that exhibit no differences between their members.  The Page tests are not combined if 
there are 12 or fewer sets in any stratum, or 21 or fewer sets if the dependent variable has 3 categories. 

 

Pairwise comparisons 
 
A 95% confidence interval between the proportions of “yes” responses in two samples is estimated by the 

method described by Bi (2006: formula 5.1.4): 

Lower limit = P1 – P2 - z* √{[P1 + P2 – 2P12 – (P1 – P2)
2
] / N} 

Upper limit = P1 – P2 + z* √{[P1 + P2 – 2P12 – (P1 – P2)
2
] / N} 

where P1 and P2 = the proportions of “yes” observations in the two respective  samples 

P12 = the proportion with “yes” observations in both of the respective samples 

N = number of subjects (i.e., number of sets of matched observations) 

z* = the z value corresponding to a P value of alpha*  (i.e., the upper alpha* point of the standard          

normal distribution) 

alpha*j  = 0.5 * [1 – (1 – alpha)
1/c

] 
alpha = 0.05 for a 95% confidence interval 

c = the total possible number of pairwise comparisons = k(k – 1) / 2 
N = number of sets of matched observations (e.g. number of subjects) 

k = number of matched samples 

 

McNemar tests are used to test the significance of the difference between the samples. Two-tailed P values are 

displayed. To compensate for the multiple testing, a  Sidak-adjusted P value and a(Bonferroni-adjusted P value 

(i.e P multiplied by c) is also provided. The formula for the Sidak adjusted P value is 1 - (1 – P 
c
). 

 

Odds ratios 

For each pair of samples, the odds ratio is the number of matched pairs that have “yes” for the first sample and 

“no” for the second, divided by the number with “no” for the first sample and ”yes” for the second. 

 

Kappa 
 

Kappa and its standard error are calculated by formulae 18.50 and 18.53 of Fleiss et al. (2003). 
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G1.  COMPUTE KAPPA FOR 3 OR MORE RATINGS 
(NOMINAL DATA) 

 

This module appraises the agreement between a fixed number (3 or more) of matched 

observations with respect to a variable with 2-10 categories.  It might be used to measure the 

agreement between 3 or more ratings of the same individuals, e.g. by different 

observers or tests, or between ratings made by the same observer on different occasions. 

 

The numbers of ratings (k = 3 or more) and the number of categories (2-10) must be entered.  

The findings in the set of ratings are then entered, by entering the number of ratings falling 

into each category (these should add up to k). Each set of ratings can be entered separately, , 

or sets with the same pattern of findings can be entered together, with their frequency. 

 

The program provides the overall kappa, and kappa values for individual categories. 

 

If stratified data are entered, an overall value of kappa is computed. 

 

 

Kappa 
 
The overall kappa is computed, with its standard error and significance.  Kappa values are 

also reported for individual categories, with their significance; but these test results should be 

treated with caution, since they are not based on a multiple-comparison procedure. 

 

If stratified data are entered, an overall value of kappa, weighted by sample size, is 

computed. 

 

The probability of chance agreement is taken into account in the calculation of kappa.  A 

value of 1 indicates perfect agreement  (after allowing for this probability of chance 

agreement) between ratings; 0 indicates no agreement other than what can be attributed to 

chance, and a negative value indicates less than chance agreement.  Fleiss et al. (2003) 

suggest that a value of 0.75 or more indicates excellent agreement, and 0.40 or less indicates 

poor agreement. Cicchetti and Sparrow (1981) divide Fleiss’s 0.40–0.74 group into 0.60–

0.74: good; and 0.40–0.59: fair. Alternative guidelines are: over 0.80, very good agreement; 

0.61–0.80, good; 0.41–0.60, moderate; 0.21–0.40, fair; and 0.20 or less, poor agreement 

(Landis and Koch 1977, Altman 1991).   

 

METHODS 
 

Kappa 

 

Kappa and its standard error are calculated by formulae 18.51 and 18.53 of Fleiss et al. (2003). 
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G2.  COMPUTE WEIGHTED KAPPA FOR 3 OR MORE 
RATINGS (ORDINAL DATA) 

 
This module appraises the agreement between a fixed number (3 or more) of matched 

observations with respect to a variable with 3 or more ordered categories.  It might be used to 

measure the agreement between 3 or more ratings of the same subjects, e.g. by different 

observers or tests, or between ratings made by the same observer on different occasions. 

 

The numbers of ratings (k = 3–10) or more) and the number of categories (3–10) must be 

entered. The categories chosen by the various raters are then entered - either the ratings for 

each subject seprately, or the ratings for each set of subjects with an identical set of ratings 

(with their frequency). 

 

The program provides the weighted kappa, and the analysis of variance on which it is based.  

A simple (unweighted) kappa is also displayed. 

 

 
Weighted kappa 

 

Weighted kappa measures the agreement between independent raters or ratings, using a set of 

ordered categories. [“Raters” and “ratings” are used synonymously in this module.] 

Cognisance is taken not only of complete agreements between ratings, but also of partial 

agreements, each combination of categories being given a weight based on their closeness. 

Scores of 1, 2, 3, etc. are allotted to the categories for this purpose (which assumes that the 

categories are more or less equally spaced along some dimension), and the weight given to 

each pair of observations depends on the size of the absolute difference between the scores of 

the categories in which the pair-mates fall. Complete agreement between two ratings is given 

a score of 1, and in other instances a quadratic weighting scheme is used; with weights that 

are inversely proportional to the square of the difference. between the two scores (Fleiss et 

al. 2003, formula 18.30). If there are 4 categories, the weight is 0.89 if the difference 

between scores is 1, 0.56 if it is 2, and 0 if it is 3. Quadratically-weighted kappa values tend 

to increase with the number of categories (Brenner and Kliebsch 1996).  

 

The value of kappa is derived from an analysis of variance, since quadratically weighted 

kappa is equivalent to the intraclass correlation coefficient provided by such an analysis 

(Fleiss and Cohen 1973, Berry et al. 2008). The program displays the analysis of variance.  

This method supplies the same result as more elaborate computer-intensive methods. 

Different methods yield somewhat different P values for tests of the difference of kappa from 

zero (Berry et al. 2008), 

 

The program also displays the simple (unweighted) kappa, treating the categories as nominal 

– either there is agreement between the two ratings (score = 1) or there is not (score = 0). 

 

Essenitially, both these versions of kappa are in general agreement with the basic formula  
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(PO – PC) / (1 – PC), where PO is the proportion of interrater agreement and PC is the 

proportion of agreement expected on the basis of chance alone. A large sample size (N)  is 

required. As a rough rule of thumb, (N + 1) / N should be close to 1.0 (Cicchetti et al. 2006).  

 

The probability of chance agreement is taken into account in the calculation of kappa.  A 

value of 1 indicates perfect agreement  (after allowing for this probability of chance 

agreement) between ratings; 0 indicates no agreement other than what can be attributed to 

chance, and a negative value indicates less than chance agreement.  Fleiss et al. (2003) 

suggest that a value of 0.75 or more indicates excellent agreement, and 0.40 or less indicates 

poor agreement. Cicchetti and Sparrow (1981) divide Fleiss’s 0.40–0.74 group into 0.60–

0.74: good; and 0.40–0.59: fair. Alternative guidelines are: over 0.80, very good agreement; 

0.61–0.80, good; 0.41–0.60, moderate; 0.21–0.40, fair; and 0.20 or less, poor agreement 

(Landis and Koch 1977, Altman 1991).   

 

 

Methods 
 

Weighted kappa 
 
Kappa is computed from an analysis of variance (Berry et al 2008): formula 7): 

 

Kappa = ICC = (MSBS – MSMxS) / [MSBS + (M – 1)MSMxS + (M(MSM) / (N – 1) 

where ICC = intraclass correlation coefficient 

 M = number of raters 

N = number of subjects 

MSBS = between-subjects mean square 

MSM = between-raters mean square 

MSMxS = residual mean square (raters x subjects interaction). 

 
The approximate P value is based on 

F = MSBS / MSMxS with N – 1 and (M – 1)(N – 1) degrees of freedom 

 
Simple kappa 

 
Kappa and its standard error are calculated by formulae 18.51 and 18.53 of Fleiss et al. (2003). 
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G3. APPRAISAL OF AGREEMENT BETWEEN 3 OR MORE 

RANKINGS 
 

This module appraises the agreement between three or more (up to 20) rankings of 3–9 

alternative choices, expressing the judgments of 3–20 raters. The available choices may be 

(for example) different diagnoses or  treatments. These analyses may be useful in studies of 

reliability and as a basis for decision-making based on the raters’ preferences. 

 

Each rater’s ranking must be entered, by allocating an index letter (‘A’, ‘B’, ‘C’, etc.) to each 

of the available choices, and entering the index letters in a sequence expressing the rater’s 

preference.  Ties are not acceptable. 

 

As indicators of  the raters’ agreement on specific choices, the program reports each choice’s 

median rank, and the agreement coefficient A (Riffenburgh and Johnstone 2009) for each 

choice. As indicators of the raters’ overall agreement, it computes Kendall’s coefficient of 

concordance and a “top-down”  coefficient of concordance. 

 

 
Agreement coefficient A 
 
This coefficient (Riffenburgh and Johnstone 2009) is based on the absolute differences 

between the ranks that different raters ascribe to a given choice, and the choice’s median 

rank. It generally ranges from 0 (the level of agreement expected by chance) to 1 (perfect 

agreement); a negative value indicates less agreement than might be expected by chance.  A 

P value is displayed. 

 

If the top choice (according to the median ranks) has a significant coefficient, this may be 

regarded as justifying its acceptance as the raters’ recommendation. 

 

Coefficients of concordance 
 
Kendall’s coefficient of concordance expresses the association between sets of rankings. The 

coefficient ranges from 0 (no agreement) to 1 (complete agreement).  The coefficient’s 

significance is reported, using tabulated critical values if the sample is small and a chi-square 

test if it is large.  

 

The “top-down” coefficient of concordance (Zar 1998: 449-450) gives emphasis to high-

ranking (preferred) choices. Its significance is reported. 

 

METHODS 
 
Agreement coefficient A 

 
This coefficient is computed by formula 7 of Riffenburgh and Johnstone (2009), who provide tabulated critical 

values for P = 0.05 and P = 0.10 (tables 3 and 4), based on analyses of all possible permutations. 

 



                                                                         G3.  AGREEMENT BETWEEN 3 OR MORE RATINGS 

99 

Coefficients of concordance 
 
The formula for Kendall’s coefficient of concordance is provided by (inter alios) Zar (1998: formula 20.67). 

Critical values for P = 0.05 and P = 0.01 (for small samples) are provided bySiegel and Castellan (1988: Table 

T); harmonic interpolation is used where necessary. The chi-square test (for larger samples) uses Siegel and 

Castellan;s formula 9.19. 
 

The formula for the “top-down” coefficient of concordance is provided by Zar (1998: formula 20.67) ; the 

corresponding chi-square test uses formula 20.79. 

 

 



               H.  TWO GROUPS OR TWO MEASURES (FIXED NO. OF NUMERICAL OBSERVATIONS) 

100 

 

 
H.  COMPARISON OF TWO GROUPS OR TWO MEASURES 

(FIXED NUMBER OF MATCHED NUMERICAL 
OBSERVATIONS) 

 
This module compares two sets (designated “cases” and “controls”) of matched numerical 

observations.  It can be used to compare two groups – index subjects with matched controls 

in a case-control study, cohort study, or trial – or two measurement methods.   

 

For a comparison of groups, each matched set must contain between 3 and 11 observations in 

all., comprising a fixed number of “cases” (1 to 5) and  a fixed number of “controls” (1 to 

10).  The matched sets of observations must be entered individually, after entering the 

numbers of cases and controls per set. Up to 500 sets may be entered. 

 

For a comparison of measurement methods (A and B), equal-sized sets of replicate 

measurements by the two methods are required (2 to5 by each method).  The two methods 

may be applied to the same subjects or to different subjects.  The program terms  the 

measurements by method A as “cases”, and those by method B as “controls”.  After entering 

the numbers of “cases” and “controls” per set (numbers which must be identical), the 

measurements of each subject by method A must be entered, in a separate line, followed (in 

the same line) by the measurements (of the same or a different subject) using method B.  

 

The results relevant to a comparison of groups are three tests (Rosner's and Walter's tests and 

a paired t-test) for the difference between the mean values, approximate confidence intervals 

for the difference between the mean values, between-sets and within-sets variances and. 

the Hodges-Lehmann procedure. 

. 

The results relevant to a comparison of measurements include a 95% repeatability 

coefficient and ANOVA table for each method; the 95% limits of agreement between the 

methods and the relationship between the difference and the mean value (appropriate if 

the two methods were applied to the same subjects); and F-tests for the difference between 

the methods, for the effect of repeated measurements, and for interaction, and a repeated-

measures ANOVA tables value (appropriate if the two methods were applied to different 

subjects). 

 

 

Tests 
 

Rosner's test is a generalization of the paired t-test that takes account of within-sets and 

between-sets variability (Rosner 1982). If single index subjects are compared with controls, it 

appraises the significance of the differences between their values.  If two groups of 

observations are compared, it appraises the difference between the mean values in the two 

groups.  Two P-values may be displayed.  If so, these may be regarded as the bounds of the 

true P-value.  The true P-value depends on the relative magnitude of the within-sets and 

between-sets variabilities (see below), as explained by an on-screen message.  The test 

sometimes presents technical difficulties, and is omitted. 
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Walter's test (Walter 1980) tests the significance of the mean case-control difference 

weighted by the numbers of cases and controls in the set.  Rosner (1982) points out that 

(unlike his test) Walter's test assumes zero between-sets variability, and may therefore 

provide a  misleadingly low P-value if there is much between-sets variability. 

 

The paired t-test tests the significance of the unweighted mean difference between the case 

and control means within each matched set.  Rosner (1982) points out that (unlike his test) 

the paired t test assumes zero within-sets variability, and may therefore provide a 

misleadingly low P-value if there is much within-sets variability. 

 

If the numbers of cases and controls (assumed to be the numbers of replications by two 

methods of measurement) are equal, F-tests are performed for the difference between the two 

methods, for  differences between repeated measurements,  and for interaction - i.e. for a 

difference between the methods in the uniformity (reliability) of repeated measurements.    

Each of  the latter two tests is done three times - without adjustment, and with two 

adjustments.  The adjusted tests are Fleiss’s  “Approximation 3”, which is not appropriate in 

all situations, and his “Approximation 4”, which is valid in all situations but may be 

extremely conservative (Fleiss 1985: 227).  The F-tests are appropriate only if the two 

methods of measurement were applied to different subjects. 

 

Difference between the mean values 
 

The program displays the mean case-control difference and its standard error, computed 

separately by the Rosner and Walter procedures and for unweighted data, with approximate 

90%, 95%, and 99% confidence intervals. 

 

Hodges-Lehmann  procedure 
 
This nonparametric procedure (Sprent 1993:89-90) determines the median of the differences 

between two matched sets, e.g matched cases and controls (with 90%, 95%, and 99% 

confidence intervals).  [This is not necessarily the same as the difference between the 

medians, or the median of the differences observed in each matched set.] 

 

A large-sample method of analysis is used if there are over 50 matched sets. 

 

The analysis takes account of tied differences (if the large-sample method is used), but not of 

variation within matched sets. 

 

Between-sets and within-sets variances 
 
The between-sets variance computed by Rosner's procedure (Rosner 1982) is reported.  This 

represents the variation between matched sets, and the within-sets variance represents the 

variation within either the case or the control group for a specific matched set.  The ratio of 

the two variances is an indication of the value of multiple matching.  If the between-sets 

variance is much larger than the within-sets variance, multiple matching brings little benefit 

(Rosner 1982; Lee and Wilkens 1994). 

 

 
 
 



               H.  TWO GROUPS OR TWO MEASURES (FIXED NO. OF NUMERICAL OBSERVATIONS) 

102 

95% repeatability coefficient 
 
If the numbers of cases and controls (assumed to be the numbers of replications by two 

methods of measurement) are equal, the 95% repeatability coefficient is computed for each 

method. This expresses the expectation (with 95% confidence) of the maximum size of the 

absolute difference between two observations using the same method.   

 

95% limits of agreement 
 
If the numbers of cases and controls (assumed to be the numbers of replications by two 

methods of measurement) are equal, the 95% limits of agreement are computed.  These 

(which are appropriate only if the two methods of measurement were applied to the same 

subjects) answer the question, “given a measurement by one method, how far might this be 

from a measurement by the other method?”  They demarcate the bounds of the range that, 

with a 95% probability, includes the difference between single measurements of the same 

subject by the two methods.  The 95% confidence intervals of the limits of agreement are 

estimated (the limits of agreement may be very imprecise if the sample is small). 

 

Use of the 95% limits of agreement assumes that the differences are reasonably constant 

throughout the range of measurement.  To check this assumption, the program displays 

Spearman’s coefficient of correlation between the difference and the mean level  (also 

appropriate only if the two methods of measurement were applied to the same subjects).  The 

correlation coefficient may be expected to be zero if the mean difference does not change 

with increasing values.   Even when one of the methods of measurement is a new one and the 

other is an accepted standard, it is preferable to examine the relationship between the 

difference and the mean value rather than the relationship between the difference and the 

standard measurement, which (as shown by Bland and Altman 1995b) is likely to be 

misleading. 

 
ANOVA tables 
 
If the numbers of cases and controls (assumed to be the numbers of replications by two 

methods of measurement) are equal, a one-way ANOVA table is displayed for each method, 

showing the between-subjects and within-subjects components of variance, as well as a 

repeated-measurement ANOVA for the combined data (Fleiss 1986: 220-228), which is 

appropriate only if the two methods of measurement were applied to different subjects. 

. 

 

METHODS 
 

The two groups of observations are referred to as “cases” and “controls”. 

 

Tests  
 
Rosner's test (Rosner 1982) is a generalization of the paired t-test that takes account of within-sets and between-

sets variability.  It adjusts and appraises the significance of the mean within-set difference.  The test sometimes 
presents technical difficulties, since it requires the computation of maximum-likelihood estimates by an iterative 

procedure that may fail to find an appropriate (positive) root.  If this difficulty is encountered (usually because 

of marked within-set variability) an appropriate message is displayed. 

 
In Rosner’s procedure the within-pairing variability is calculated by Rosner's formula 2.2 (Rosner 1982), and 

maximum likelihood estimates of the between-pairing variability and the adjusted mean case-control difference 
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are then computed by an iterative process, using the van Wijnsgaarden-Dekker-Brent root-solver (Press et al. 

1989: 283-286).  The adjustment takes account of the numbers of cases and controls per set, using their 

reciprocals.  Significance is appraised by Rosner's formula 2.3, using alternative degrees of freedom when 

referring the test statistic (lambda) to the t-distribution, namely N - 2R and  R - 1 (where N = number of 

subjects and R = number of matched sets). This provides two P-values (both of which are shown if they differ 

appreciably), which may be regarded as the bounds of the true P-value.  The true value depends on the relative 

magnitude of the within-sets and between-sets variabilities. 

 
Walter’s test uses formula 2.4 of Rosner (1982).  This permits application of the test to situations where there 

are matched sets with two or more cases.   

 
The paired t-test is calculated by the usual formula (see, e.g. Selvin 1991: 65, formula 2.51), except that in each 

matched set the two values (of case and control) are replaced by the means (of cases, if there is more than one 

case, and of controls, if there is more than one control). 

 
The F-tests are based on a repeated-measurement  ANOVA (see Fleiss 1986: 220-228).  The adjustments, 

which Fleiss calls Approximations 3 and 4, involve changes to the degrees of freedom  (Fleiss 1986: 227: 

formulae 8.9 and 8,10); the changed degrees of freedom are rounded off to the nearest whole number.  This 

ANOVA is not done if the number of measurements varies for different subjects. 

 

Difference between the mean values 
 

In Rosner's procedure (see above), the adjusted mean case-control difference is computed by weighting the 

difference in each matched set by 

1 / {B + W.[(1 / N1) + (1 / N2)]} 
where  

B = between-sets variance 

W = within-sets variance   

N1 and N2 = numbers of cases and controls in the set. 

 

In Walter’s procedure, the difference in each matched set is weighted by  

1 / [(1 / N1) + (1 / N2)]  

 
Hodges-Lehmann procedure 
 
The differences between the values of cases and controls are calculated in the n matched sets. Where there are 

more than one case or control, their respective median values are used. 

 

As described by Han (2008), each difference is then compared with each other difference, and for each of these 

m = n(n -1 )/2 comparisons of two values, the mean of the pair of differences (Walsh value) is computed. 

The m means are then ranked in ascending order, and their median is determined.  This is the point estimate of 

the Hodges-Lehmann median difference between cases and controls. 

 

If  n <= 50, a value R corresponding to the value of n  is obtained from  Table A12 of Conove r(1999: p. 545), 

using the W0.005, W0.025, and W0.05 column for the 90%, 95%, and 99% confidence intervals respectively. The 

lower confidence limit is the Walsh value whose rank is R in the series, and the upper confidence limit is the 
Walsh value whose rank is R from the upper end of the series, 

 

If  n  > 50, confidence intervals are estimated by a large-sample approximation (Hollander and Wolfe 1999:132-

133, using the formulae provided by Han (2008), but with a correction for tied ranks (Unistat Statistics 

Software).  The lower confidence limit is the Walsh value whose rank is R in the series, where R = .za./.b 

rounded up to the nearest integer), and the upper confidence limit is the Walsh value whose rank is R from the 

upper end of the series, 

where z = -1.645, -1.96, or -2.5767 (for 90%, 95%, or 99% limits respectively) 

a = √ [n(n + 1)(2n + 1) / 24 - Tee / 48]   

b = n(n + 1) / 4 
n = number of matched sets 

Tee = the sum of  (ti
3
- ti) 
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ti = the number of ties in each set of tied ranks 

 
The correction for ties (Tee / 48) in calculating a is omitted if it reduces a to zero or a negative value. 

 
 
95% repeatability coefficient 

 
The computation of the coefficient of repeatability is explained by Bland and Altman (1999: 149). 
 

 
 
 
95% limits of agreement 
 
The 95% limits of agreement and their confidence intervals are computed by the method explained by  Bland 

and Altman (1999; section  5.1: formulae 5.3 and 5.10 ), using within-subject mean squares based on one-way 

analyses of variance for the two methods (Guilford and Fruchter 1986: 234-5: formulae 13.15 and 13.16). 
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I1.  COMPARISON OF 3 TO 10 SAMPLES OR REPLICATES 

(FIXED NUMBER OF MATCHED NUMERICAL 
OBSERVATIONS) 

 

This module is for use in studies based on dependent samples of numerical (ordinal or 

interval-scale) observations.  It can appraise the findings in 3 to10 related samples (each 

member of which is matched with members of all other samples), or 3 to 10 sets of 

measurements of each subject. It may be used, for example, to analyse a trial in which 

matched subjects receive 3 to 10 different treatments, or one in which each subject receives 3 

to 10 different treatments, or the same treatment under 3 to 10 different conditions, or an 

observational study comparing matched subjects who have different degrees of exposure to a 

risk factor or are measured under different defined conditions or  by different observers, or a 

study in which the same individuals are observed under different specified conditions or at 

various specified times, or are asked different specified questions. 

 

The module can be used  in reliability studies in which each subject’s measurements are 

replicated 3 to 10 times, either using the same method, or using 3 to 10 different observers or 

methods of measurement.  

 

If the samples lie (or are assumed to lie) in an ordered sequence, they should be arranged 

accordingly.  If there is a reference group, it should be entered as the first sample (A).  In 

reliability studies, replicates may be entered in any order, unless they represent fixed 

instruments, observers, times, conditions, etc. 

 

Each set of related observations must be entered separately (up to 500 sets). For 30 or fewer 

sets, the program reports the mean of each set ,with its  standard deviation and coefficient of 

variation. If a normal distribution is not assumed, ranks can be entered instead of the 

measurements, e.g. 1  3  2 instead of  6.1  11  9; or (for ties) 1  4  2.5  2.5 instead of  6.1  11  

9  9 (giving tied observations the mean of the ranks they would have if they differed slightly).  

 

The program appraises the differences between the samples and provides measures of effect 

and measures of agreement and disagreement. Some of the procedures are nonparametric, 

and are applicable to all numerical data:  Friedman’s two-way analysis of variance by ranks, 

Quade’s test for non parametric two-way analysis of variance, nonparametric  pairwise 

comparisons, Kendall’s concordance coefficient,  and the Spearman’s correlation coefficient. 

Others are parametric, and  are applicable only to interval-scale data with an assumed normal 

distribution*: analysis of variance, F-tests, and other pairwise comparisons; omega-squared, 

eta-squared, and Fisher’s F index; intraclass correlation coefficients, repeatability 

coefficient, and Spearman-Brown coefficients of reliability; and (optionally) tests for 

equivalence. The parametric procedures are not appropriate if ranks are entered. 

 

For stratified data, enter each stratum in turn, and click on “All strata” for combined results. 

If stratified data are entered, the Friedman and Page tests in the separate strata are combined 

and the heterogeneity of the P-values in the strata is tested. 

 
*  [As pointed out by Altman (1991: 330), it may not be the raw data, but the residual values (after allowing for  

    the effects of sample membership and matched-set membership), that should be normally distributed.]  
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Analysis of variance 
 

A one-way analysis of variance (single-factor within-subjects ANOVA) is performed. The 

analysis assumes that the subjects were selected randomly from the population they 

represent, that distributions are normal, and that the data in the various samples have similar 

variances and covariances. A significant result points to a significant difference between the 

means of at least two of the populations represented by the samples. 

 

Comparison of samples 
 

The F test, which is appropriate for interval-scale data with an assumed normal distribution, 

test the null hypothesis that there is no difference among the mean values of the various 

samples.  It is based on the analysis of variance. A significant result points to a significant 

difference between the means of at least two of the populations represented by the samples. 

An adjusted F-test is also performed, using a usually conservative method described by 

Geisser and Greenhouse (1958) as an extension of the results of Box (1954). This  result is 

appropriate if the homogeneity of variances and covariances is in doubt, but it  “may be too 

conservative”. 

 

In addition, Friedman's two-way analysis of variance by ranks (Siegel and Castellan 1986:  

174-183; Zar 1998: 263-267) is performed. This is an extension of the sign test, and is 

applicable to all numerical data.  It tests the null hypothesis that the values in the different 

samples represent the same population median, against the alternative that at least two of the 

samples have different medians. Quade’s test for non parametric two-way analysis of 

variance (Quade 1979, Conover 1999: 373-30), which is an extension of the Wilcoxon 

signed-rank test, is also performed. The Quade test may be more powerful for a small 

number of related values, while the Friedman test may be more powerful when the number of 

related values is five or more. 

 

Assuming a normal distribution, the program provides two sets of 90%, 95%, and 99% 

confidence intervals for the mean of each sample.  The first set is based on the estimated 

variance in the specific sample, and the second set (which has narrower intervals) is based on 

the within-samples variance, on the assumption that the samples have similar variances 

(Sheskin 2007: 1052-1053).  The program also provides two sets of 90%, 95%, and 99%  

confidence intervals for the difference between each pair of sample means, one using Fisher’s 

LSD procedure and one using the Scheffé procedure (Sheskin 2007: 1034-1035).  

 

The pairwise comparisons, testing the differences between all sample means (assuming a 

normal distribution), use Fisher’s LSD procedure and the Scheffé procedure (which is more 

conservative). Nonparametric pairwise tests (applicable to all numerical data) are based on 

the Friedman procedure, and are done only if the Friedman test reveals a significant 

difference (P < 0.05) between samples; the median of each set of matched observations is 

displayed, with (if the number of observations is at least 10) the interquartile range. 

 

The multiple-comparison tests include a set of comparisons of each sample mean with that of  

Sample A.  The Dunnett procedure (Dunnett 1964) is used for this purpose. 

 

Optionally, equivalence tests are performed, testing the equivalence of the matched 

measurements by the procedure described by Yi et al. (2007). This requires entry of the 
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bounds of “equivalence”, i.e., the largest difference between measurements that is to be 

regarded as negligible or ‘acceptable’.  The tests are based on a comparison of the within-

subject variance with this specified difference  (and also with this difference multiplied by 

0.5, 0.75, 1.5, or 2).     A P value under 0.05 implies good agreement (negligible variation, 

i.e. equivalence) at a 5% significance level/ 

  

If stratified data are entered, the results of the Friedman analyses of variance in the separate 

strata are combined by Stouffer’s method (Stouffer et al. 1949, p. 45; DeMets 1987) to 

produce overall P-values that control for the stratifying variables.  Three different sets of 

weights  are used for this purpose – weighting  the test results equally, by the sample sizes in 

the strata, and by the square roots of the sample sizes.  In addition, the heterogeneity of the P-

values in the strata is tested.   

 

Trend of the samples 
 

Page’s test for a monotonic trend (Page 1963, Siegel and Castellan 1988: 184-188) is 

applicable to all numerical data.  For the test to be meaningful, the samples should be entered 

in the sequence to be tested.  The test might, for example, be a way of appraising the dose-

response relationship in a trial in which different doses are given to different matched 

samples or to the same individuals at different times. 

 

Measures of effect 
 

Four measures of the magnitude of the effect – i.e., the strength of the association between 

the independent variable (represented by the various samples) and the dependent variable – 

are computed. 

 

Omega-squared (ω
2
) is an estimate of the proportion of variability of the dependent variable  

that is associated with variability in the independent variable, i.e. with differences between 

the samples (Sheskin 2007: 1049-1050). By Cohen's criteria, a value of 0.1379 or more 

indicates a large effect size, 0.0588 or more (but less than 0.1379) indicates a medium effect 

size, and 0.0099 or more (but less than 0.0588) indicates a small effect size (Sheskin 

2007:1051).  Cohen (1988) warns that these criteria should be used only when there is no 

better basis for evaluation. A zero or negative value indicate absence of an association The 

program computes two versions of omega-squared – standard omega-squared, which 

assesses the effect on total variability, and partial omega-squared, which is said to be more 

meaningful because it eliminates subject variability from the total variability (Sheskin 2007: 

1050). 
 

Eta-squared (η
2
) is an alternative estimate of the proportion of variability of the dependent 

variable that is associated with differences between the samples.  The program computes an 

adjusted eta-squared (Sheskin 2007: 1072), which tends to overestimate the relationship 

between the independent and dependent variables. 

 

Cohen's f index (Sheskin 2007; 918) is a "standard deviation of standardized means". By 

Cohen's criteria, a value of 0.4 or more indicates a large effect size, 0.25 or more (but less 

than 0.4) indicates a medium effect size, and 0.1 or more (but less than 0.25) indicates a 

small effect size (Sheskin 2007: 1051). 
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Measures of agreement 
 

Kendall's coefficient of concordance (which varies between 0 and 1) is based on the ranks of 

the observations within each related set, and expresses the degree of similarity of their  

ranking in different samples.  

 

The average Spearman's coefficient of rank correlation between all possible pairs of 

rankings can vary from  -1 / (k - 1)  to  1, where k is the number of matched observations in a 

set. 

 

Intraclass correlation coefficients, which are appropriate for interval-scale data with an 

assumed normal distribution, are measures of agreement that express the correlation (in terms 

of absolute agreement) between measurements within individuals or sets of matched 

individuals.  Six intraclass correlation coefficient (ICC) values are computed (Shrout and 

Fleiss 1979), with their 95% confidence intervals. 

 

Each ICC is appropriate in a different situation.  (a)  The values with the rubric “two-way 

model with fixed raters” are appropriate in studies where the matched observations in each 

set represent various “unique” raters, and no inferences are made about other raters;  “raters” 

denote the various observers, treatments, methods or conditions of observation, matched 

individuals, or (in a reliability study of a questionnaire or other scale)  questions or other 

scale items, that were studied.  Two such ICCs are provided. The first, which Shrout and 

Fleiss refer to as model 3.1, uses a single measurement as the unit of analysis, and the second 

(model 3,k) uses an average measurement.  (b) The two ICC values reported as “two-way 

model with random raters” are appropriate if the raters were randomly selected from a larger 

population of raters and it is proposed to generalize the findings to this larger population.  If 

analysis is based on a single measurement, this is model 2,1; if it based on an average 

measurement, it is model 2,k.  (c) The third pair of ICC values, entitled “one-way random 

model”, is appropriate in methodological or other studies where the measurements are 

replications by the same observer or using the same instrument, and the order in which they 

are entered does not matter (this does not apply to the other ICC values)..  They apply to the 

use of a single measurement (model 1,1) – e.g. in studies to determine the reliability of a 

single measurement – or to an average measurement (model 1,k)  – e.g. in studies to 

determine the reliability of an average measurement. 

 

The maximum value of an ICC is 1; the lower limit is an indeterminate negative value.  As a 

rule of thumb, it has been suggested that ICC values above 0.75 should be regarded as 

evidence of excellent, and values above 0.4 as evidence of good, reliability (Shoukri and 

Pause1999: 27).   

 

In the appraisal of replicated measurements a low ICC may express variability of the 

characteristic measured, as well as low reliability of measurement; this is especially 

important if measurements were conducted at different times. 

 

The coefficient of repeatability is applicable if replicate measurements were entered, and is 

appropriate for interval-scale data with an assumed normal distribution.  It expresses the 

expectation (with 95% confidence) for the maximum size of the absolute difference between 

a pair of observations, assuming that repeatability is similar at all magnitudes.  Approximate 

confidence intervals are estimated for the coefficient. 
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Spearman-Brown coefficients of reliability provide estimates of the effect of using the means 

of replicated observations.  They predict what the reliability would be if two, three, four, or 

five replications were averaged. 

 

Measures of disagreement 
 

The degree of disagreement between each pair of samples is appraised by use of the 

information-based measure of disagreement (IBMD) between two sets of matched numerical 

observations proposed by Costa-Cantos et al. (2010), which  is based on the differences 

between the paired observations, in relation to the magnitude of the larger value in the pair. It 

is applicable to ratio-scale variables (i.e., those where a zero value indicates absence of the 

attribute) that have positive values. The measure ranges from 0 (no disagreement) to 1 

(strong disagreement). 

 

Optionally,  95% confidence intervals are estimated for these measures of disagreement, 

using a bootstrap procedure (see Sheskin 2007: 532-536), which may cause a delay in the 

calculation if the sets of matched observations are large or numerous.  If the delay is too 

long, the procedure can be aborted by clicking on the “Stop” button.  If the data are not 

extensive, the confidence intervals are estimated by default. 

 

In addition, an overall measure of the disagreement among the multiple samples (Henriquez 

et al. 2013) is reported, together with its approximate 95% confidence intervals. 

 

 

METHODS 
 

Analysis of variance 
 

The method is described by (Zar 1998, 255-260) and, in detail, by Sheskin (2007: 1025-1031 and 1056). 

 
Comparison of samples 
 
The F test is based on the analysis of variance (Zar 1998, 255-260). Geisser and Greenhouse’s alternative test is 

described by Sheskin (2007: 1045). 

 
In Friedman's two-way analysis of variance by ranks (Siegel and Castellan 1986: 174-183; Zar 1998: 263-267), 

the program uses criteria for P < 0.05, 0.01, and 0.001 listed by Zar (1998: Table B.14) if there are 3 or 4 

samples with less than 16 values in each, or 5 or 6 samples with less than 11 values in each.  Otherwise 

significance is appraised by use of the Friedman statistic, which has an approximately chi-square distribution 

unless numbers are small. Also, use is made of Iman and Davenport's F (Iman and Davenport 1980), which is 

generally more powerful (Zar 1998: 264).  The formula for Iman and Davenport's F is provided by Sprent 

(1993: 145) and Zar (1998: formula 12.47), with N - 1 and (k - 1)(N - 1) degrees of freedom.  If the rankings in  
the sets are identical, F has a value of infinity, and 

P = (1 / N)(k - 1), 
where  N = number of samples   

k = number of sets. 

 

In Quade’s test for non parametric two-way analysis of variance (Quade 1979, Conover 1999: 373-30) 

significance is appraised by using the F distribution, which approximates the exact distribution of the test 
statistic. The F approximation becomes closer as the number of sets of related measurements increases. 

 
In Page’s trend test (Siegel and Castellan 1988: 184-188), Page's statistic L is calculated by formula 7.7, and Z 

by formula 7.10.  A one-tailed P-value is computed, based on the normal distribution; but if numbers are small, 

(3 groups with < 21 observations in each, or 4-10 groups with < 13), the Page statistic L is compared with 

critical values for P < 0.05, P < 0.01, and P < 0.001 (Siegel and Castellan 1988: 354-355, Table N). 
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The parametric multiple comparison tests that compare the mean of sample A with all other sample means use 

the , Dunnett  procedure (Zar 1998, 217-218; Dunnett 1964). The results are appraised in relation to critical 

values of the Q distribution (Zar 1998, Tables B6 and B7), and are reported as P < 0.01, P < 0.05, or not 

significant (P > 0.05). The parametric pairwise tests that compare each sample with every other sample use 

formulae that solve F by equations derived from equations 24.17 (for Fisher’s LSD test) and 24.18 (for the 
Scheffé test) of Sheskin (2007: 1034), after substituting the observed difference between means for CD. 

 

The non parametric multiple comparison tests are described by  Siegel and Castellan (1988: 180-183); the 

comparisons with  sample A use critical values for P < 0.05 and 0.01 derived from Siegel and Castellan (1988: 

321, Table Aiii), and the pairwise comparisons that compare each sample with every other sample use critical 

levels for P < 0.05, P < 0.01, and P < 0.001. 

 

If stratified data are entered, the results of the Friedman analyses of variance in the separate strata are combined 

by averaging their z values (Stouffer et al. 1949, p. 45; DeMets 1987).  Three different sets of weights are used 

for this purpose – weighting  the test results equally, by the sample sizes in the strata, and by the square roots of 

the sample sizes.  In addition, a heterogeneity test is performed, comparing the P-values in the strata, using the 

formula (Wolf 1986: 45): 

chi-square (k - 1 d.f.) = ∑(Zi - MeanZ)
2 

where  k = number of strata, 
Zi = z value in stratum i 

MeanZ = mean z value. 

The Page tests for trend are combined in the same way, but using the signed z values provided by the tests, and 

without excluding sets that exhibit no differences between their members.  The Page tests are not combined if 

there are 12 or fewer sets in any stratum, or 21 or fewer sets if the dependent variable has 3 categories. 

 

Tests of equivalence 
 
The method is described by Yi et al. (2007). 

Chi-square  = SSW / (D
2
 x 1.96 x 1.96 x 2) 

where SSW = within-subject variance (based on ANOVA) 

 D = maximum acceptable difference 

The P value for the test is 1 minus the P value associated with this chi-square, with n(k-1) degrees of freedom, 

where  n = no. of sets of paired measurements  and  k = no. of repeated measurements (e.g. 3) 

 

Measures of effect 
 
These measures are computed by equations 24.25 (for standard  omega-squared), 24.28  (for partial omega-
squared), and 24.40 (for the adjusted eta-squared), of Sheskin (2007).  Cohen's f index (Sheskin 2007: 1051)is 

not computed if omega-squared is negative.   

 

 
 
 
Measures of agreement 
 
Kendall's coefficient of concordance is derived from the Friedman statistic by formula 12.51 of Zar (1998).  Its 

significance is tested by computing chi-square (using formula 9.19 of Siegel and Castellan 1988: 269), unless 

there are under 21 matched sets and under 8 samples, when use is made of the critical values in Table T of 
Siegel and Castellan 1988: 365).   

 
The average Spearman's coefficient of rank correlation between all possible pairs of rankings is derived from 

Kendall's coefficient of concordance (Siegel and Castellan 1988: 262). 

 
The following formulae (Shrout and Fleiss 1979) are used for the six intraclass correlation coefficients.  Shrout-

Fleiss ICC models  1,1 and 1,k are computed from a one-way random effects model ANOVA, models 2,1 and 

2,k from a two-way random effects model ANOVA, and models 3,1  and 3,k  from a two-way mixed effects 

model ANOVA. 

ICC model 1,1 = (MSB – MSW) / [MSB +  (k – 1)MSW] 
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ICC model 1,k = (MSB – MSW) / MSB 

ICC model 2,1 = (MSB – MSE) / [MSB + (k – 1) MSE + k(MSJ – MSE) / N] 

ICC model 2,k = (MSB – MSE) / [MSB + (MSJ – MSE) / N] 

ICC model 3,1 = (MSB - MSE) / [MSB + (k - 1)MSE] 

ICC model 3,k = (MSB – MSE) / MSB 
where  MSB = between-subjects mean square 

MSE = residual within-subjects mean square 

MSW = within-subjects mean square 

N = number of subjects 

k = number of observations in matched set 

Formulae for confidence intervals for the six ICC models are provided by McGraw and Wong (1996a and 

1996b) in their Table 7, where they are referred to as ICC(1) and ICC(k) for Case 1, and ICC(A,1) and 

ICC(A,k) for Cases 2 and 3,  The formulae (except those for  models 2,1 and 2,k)  are set out in a convenient 

code by Steinley and Wood (2000).  Linear interpolation is used to estimate F values that are based on non-

integer degrees of freedom (and 1 d.f. is substituted for <1 d.f.) in the computation of confidence intervals for 

models 2,1 and 2,k; the latter results  may differ slightly from those provided by SPSS, which handles non-

integer degrees of freedom differently. 
 

The Spearman-Brown prediction formula (Fleiss 1986: 14-15: formula 1.3 ) for reliability (R) is 

R = Nr / [1 + (N – 1)r] 
where  N = number of replicates that are averaged 

 r = intraclass correlation coefficient (model 1,1) 

This application of the Spearman-Brown formula was suggested by its use by Solomon (2004). 
 

Fleiss’s formula 1.31 is used to estimate the number of replicates required to obtain a reliability of 0.75 or 0.8: 

N = P(1 – r) / [r(1 – P)], where P = 0.75 or 0.8 

 

The computation of the coefficient of repeatability is explained by Bland and Altman (1999: 149).  

Approximate confidence intervals are obtained by substituting confidence limits for the within-samples 

variance, estimated by the method described by Zar (1998: formula 7.16), in the formulae. 
 

Information-based measure of disagreement (IBMD) 
 

The formula for the pairwise comparisons (Costa-Santos et al. 2010) is 

 ∑Li  / n 

where Li = log{[ai - bi| / max(ai,bi)] + 1}.log(2) 

or (equivalently) Li = log2{[|ai - bi| / max(ai,bi)] + 1} 

 ai and bi are the observations in pair i  

 n = the number of pairs of observations 

If ai and bi are equal, Li is taken as 0. 

 

The measure is not computed if any ai or bi is negative, or if there are over 500 sets of matched observations. 

 

The confidence interval is obtained by a bootstrap procedure, using the basic percentile method (Efron 1981, 

Efron and Gong 1983) as described by Sheskin (2007: 532-536). The approximate 95% limits are the (2.5)th 
and (97.5)th percentiles of the distribution of the measures of disagreement (computed by the above method) in 

1000 random samples of the same size as the original sample, each drawn (with replacement) from the values in 

the original sample. Because of resampling, repetitions of the procedure may yield slightly different results. 

 

The random sampling in this bootstrap procedure uses a pseudo-random number generator described by 

Wichman and Hill (1985), which derives each number in turn from three seed numbers that it modifies for 

subsequent use.  Initial values for the seed numbers are generated by Delphi's inbuilt random-number 

procedures, namely RANDOMIZE, using the system clock, and RANDOM, which generates three random 

numbers from which the required seed numbers are computed.  Delphi's RANDOM procedure is augmented by 

an additional randomizing shuffle, using the algorithm of Bays and Durham, as described by Press et al. (1989: 

215-217). The formula for each selection is 

trunc(RM) + 1 
where  R is a random number in the range 0 < R < 1 
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M = the number of candidates. 

 

The overall IBMD is computed by the formula provided by Henriquez et al. (2013). It is equivalent to a simple 

average of the IBMD values computed for the pairwise comparisons.  Its 95% confidence intervals are 

estimated by averaging the lower confidence limits and the upper confidence limits, respectively, for the 

pairwise IBMD values.  
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I2. ASSESSMENT OF INTERRATER AND INTRARATER 

RELIABILITY 
 

This module assesses interrater and intrarater reliability in a study that compares replicated 

independent ratings (a fixed number of interval-scale numerical measurements) of the same 

subjects made by each of two or more raters.  The "raters" may be different observers, 

different measuring instruments, or different methods or conditions of measurement.  They 

may be specific raters of interest, e.g. two different instruments ("fixed raters"), or they may 

represent a larger population of raters ("random raters"). 

 

The required entries are the number of raters , the number of ratings of each subject by each 

rater), and the observations.  The total number of ratings of each subject cannot exceed 12. 

 

The program computes reliability coefficients (intraclass correlation coefficients) for 

random and fixed raters (with their approximate confidence uintervals and with significance 

tests), confidence intervals for the difference between reliability coefficients,  various 

measures of the standard error of measurement and the minimum significant change, and 

coefficients of interrater agreement and variability. The analyses of variance on which 

the results are based are displayed. 

 

 

Reliability coefficients 
 

Interrater reliability (the variability among the raters) and intrarater reliability (the 

variability within the raters) are expressed by  intraclass correlation coefficients.  Separate 

results are provided for random raters (for use if the results are to be generalized to other 

raters) and for fixed raters (where the results apply only to the raters that were studied).   

Interrater reliability is reported for random and fixed raters, and intrarater reliability for 

random raters and (for use if the raters are fixed) for each separate rater.  The program uses 

the procedures described by Eliasziw et al. (1994), in which, in order to enhance precision, 

each individual measurement contributes to the estimation of both interrater and intrarater 

coefficients. 

  

Lower confidence limits are reported, at three confidence levels: the 90%  two-sided 

confidence limit (which is equivalent to the 95% one-sided confidence limit), the 95% two-

sided confidence limit (which is equivalent to the 97.5% one-sided confidence limit), and the 

99% two-sided confidence limit (which is equivalent to the 99.5% one-sided confidence 

limit).  Upper confidence limits are reported for each of the above coefficients; for some data 

sets, the computation yields anomalous upper limits for the intrarater ICC for random raters, 

and these are then not reported. 

 

Haber et al. (2005) have pointed out that the interrater reliability coefficient measures the 

total rater-related variability, and is influenced by between-subjects variability. If there are 

substantial differences between subjects the coefficient may be close to 1 even when there 

are important differences between observers. 
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One-tailed significance tests are performed, testing the null hypothesis that the ICC is below 

or equal to a selected minimum level of reliability that is considered acceptable, against the 

alternative that the ICC is greater than this minimum level (Eliasziw et al. 1994). A low P 

value rejects the null hypothesis, and suggests that the measurements have an acceptable 

level of reliability.  The test is approximately equivalent to a comparison with the 

corresponding 100(1-alpha)% one-sided lower confidence limit. The tests are applied to the 

interrater ICC (for random or fixed raters) and to the intrarater ICC for each rater.   

 

Landis and Koch (1977) have suggested the following criteria for the ICC: 0.0–0.20, slight 

reliability; 0.21–0.40, fair; 0.41–0.60, moderate; 0.61–0.80, substantial; and 0.81–1.00, 

almost perfect reliability. 

 

If ratings by two raters are entered, the program estimates 90%, 95%, and 99% 

confidence intervals are estimated for the difference between their intrarater reliability 

coefficients, based on the confidence intervals of these coefficients. 

  

Standard error of measurement 
 

The standard error of measurement (SEM), or "measurement error", which has comparable 

meaning to a standard deviation, summarizes the variability among or within the raters' 

measurements.   It is calculated separately for interrater and intrarater comparisons, and 

different values are reported for random raters (for use if the results are to be generalized to 

other raters) and for fixed raters (where the results apply only to the raters that were studied).  

The values that are displayed are the interrater SEM for random raters, the interrater SEM for 

fixed raters, the intrarater SEM for random raters, and (for use if the raters are fixed) an 

intrarater SEM for each rater.  The interrater SEM takes account of the variability within 

raters' measurements as well as the variability among raters' measurements  (Eliasziw et al. 

1994).  

 

The SEM may be used for a significance test to appraise whether there has been a real 

change in a subject's rating, in excess of interrater or intrarater variability (Eliasziw et al. 

1994).   This is done by dividing the observed change by (1.414 x SEM) and comparing the 

result (z) with critical values of the standard normal distribution; for example, if z exceeds 

1.96, P is under 0.05.   If the same rater made both measurements, the SEM to be used for 

this purpose is the intrarater SEM for that rater.  If there were different raters, an interrater 

SEM (for random or fixed raters) is appropriate.  

 

Minimum significant change 
 

As a simple aid to the appraisal of  changes in subjects' ratings, the observed change can be 

compared with the "minimum significant change".  If the observed change exceeds this 

minimum significant change, it is fairly certain that a real change has occurred (Eliasziw et 

al. 1994).   Various values are provided for the minimum significant change, depending on 

whether the ratings were made by the same rater or by different raters (fixed or random) and 

whether alpha is set at 0.05 or 0.01. 

 

The minimum significant change may be referred to as a  repeatability coefficient, expressing 

the expectation (with 95% or 99% confidence) of the maximum size of the absolute 

difference between paired observations.   
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Coefficients of interrater agreement and variability  
 

Coefficients of individual agreement (CIAs) are computed if two raters (observers or 

methods) are compared. They are based on the disagreements, for each subject, between two 

fixed raters, in comparison with the disagreements between replicated observations by the 

same rater). An acceptably high coefficient (i.e., avalue close to 1 or above 1) indicates that 

the raters can be regarded as interchangeable; i.e., replacing one by the other does not 

substantially increase the disagreement between measurements made on the same subject. 

These coefficients should be used only if the levels of intrarater agreement are acceptable, 

since intrarater disagreements are the standard with which the between-rater disagreements 

are compared (Barnhart et al. 2007, Haber and Barnhart 2008, Pan et al. 2010). Separate 

coefficients of individual agreement are computed, based respectively on the assumptions 

that one or other of the observers or methods is a "gold standard", or that neither is a "gold 

standard". 

 

Using the CIAs, a lower limit of 0.8 for "acceptable" agreement has been suggested; this 

indicates that the disagreement between the raters does not exceed the disagreement between 

replicated observations (by the same rater) by more than 25%.  In comparisons of the effects 

of two drugs on the same subjects (i.e. if “methods” A and B are drugs A and B), the U.S. 

Food and Drug Administration uses an individual bioequivalence criterion (IBC) that can be  

derived from the CIA by the formula IBC = [2(1 – CIA)] / CIA (Barnhart et al. 2007), and it 

recommends an upper limit of 2.495 for declaring individual bioequivalence (Food and Drug 

Administration 2001). This is equivalent to a lower limit of 0.445 for the CIA.  

 

If there are the same number of replicated observations (up to 6) by each of two observers (or 

methods),the program also computes the adjusted coefficient of individual  equivalence ( ), 

using a permutation-based nonparametric procedure, with its 90%, 95%, and 99% confidence 

intervals (Pan et al. 2011b). The suggested criterion is that a value of 0.8 or more indicates 

good agreement between the observers. The program uses the absolute difference between 

observations as its measure of disagreement; (if it used the square of the difference, the CIEA 

would in this instance be the same as the CIA). If the interobserver difference is smaller than 

the intra-observer differences the CIEA may be severely biased (M Haber, personal 

communication), and a warning is then displayed. Computer simulations indicate that this 

coefficient is robust, and relatively little affected by the degree of between-subject variability 

(whereas the interrater concordance coefficient tends to be inflated when there is much 

between-subject variability) (Pan et al. 2011a).  

 

Large-sample confidence intervals are provided. 

 
The coefficient of interobserver variability (CIV), an index proposed by Haber et al. (2005),  

is the ratio of the interrater component of variability to the total (between and within) rater- 

related variability.  Its maximum is 1, and it has the same value for random and for fixed  

raters.  Unlike the intraclass correlation coefficient, it is not influenced by between-subjects 

variability.  Its significance is reported (null hypothesis: coefficient = 0).  A negative value 

may (like a zero value) be interpreted as maximal agreement, since it means that the 

interobserver variability is smaller than would be expected if the raters agreed perfectly 

(Haber MJ, personal communication, 2005).  

  

The program also displays the coefficient of interobserver agreement (which is 1 - CIV) and  
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its significance (null hypothesis: coefficient = 1). If there are two observers, this coefficient is 

equivalent to the CIA where there is no "gold standard". 

 

The coefficient of excess observer variability, which is 1 / (1 - CIV), is the ratio of the total 

observer variability to the variability that would be expected if the raters agreed perfectly.  Its 

maximum is infinity.  A value of 1 (or a value under 1, if the CIV is negative) indicates that 

there is no excess variability due to true differences between the raters.    

 
 

METHODS 
 

Ratings may be entered for up to 900 subjects. 

 
The computation of intraclass correlation coefficients, the standard error of measurement, and the minimum 

significant change is described in detail by Eliasziw et al. (1994). Formulae for the intraclass correlation 

coefficients are on pp. 779-780, for the confidence levels on pp. 781-782, for the one-tailed significance tests on 

pp. 785 and 786, and for the standard error of measurement on p. 783.  The minimum significant change is 

z.√(2).SEM (using the appropriate SEM), where z = 1.96 (for alpha = 0.05) or 2.576 (for alpha = 0.01). The 

formulae are also provided by Hayen et al. (2007) 

 
Confidence intervals for the intrarater coefficients for specific fixed raters are estimated by the formula for 

model ICC(1) provided by McGraw and Wong (1996a: Table 7), and set out in a convenient code by Steinley 

and Wood (2000).   

 

If one of the degrees of freedom for F is not an integer, it is rounded off to the nearest integer.  If it is below 1, it 

is changed to 1. 
 

The computation of the coefficient of interobserver variability (CIV) and its derivatives  is described by Haber 

et al. (2005).   Formula 6.2, which provides the same numerical result as formula 3.2, is used to estimate the 

CIV.  The coefficient of interobserver agreement is 1 - CIV, and the coefficient of excess observer variability 

is 1 / (1 - CIV).  The significance test is described on pp. 78-79. 

 

Coefficients of individual agreement are computed by the methods described by Haber and Barnhart 2008. 

For each subject, the mean squared deviation (MSD) between all pairs of observations (comparing the two 

raters, A and B) is computed. These values are then averaged over all subjects, to provide an overall MSD(A,B). 

Corresponding average values for the overall within-rater MSDs, namely MSD(A,A') and MSD(B,B'),  are 

obtained by doubling the within-subject (residual) mean squares provided by the analyses of variance for fixed 

raters. 

If neither A nor B is a gold standard, CIA = [MSD(A,A') + MSD(B,B')   /  2]  / MSD(A,B). 
If A is a gold standard, CIA =  MSD(A,A') / MSD(A,B).  

If B is a gold standard, CIA =  MSD(B,B') / MSD(A,B). 

 

The adjusted coefficient of individual equivalence  (CIEA) is computed by the formulae provided by Pan et al. 

(2011b).  The computation is based on the mean absolute deviations between observations (MAD); if it were 

instead based on mean squared deviations (MSD), the coefficient would (in this instance, where there aret he 

same number of replicated observations for each observer) be equivalent to the CIA with no gold standard (Pan 

et al 2011a: Appendix C1).  

 

Confidence intervals for the difference between two intrarater coefficients are computed by the MOVER 

(method of variance estimates recovery) technique, as described and tested by Ramasundarahettige et al. (2009), 

using their formulae 8 and 9. 
 
Repeated-measure analyses of variance are performed (Armitage et al. 2002: 244-246: Example 9.2).  The 

between-raters-within-subjects sum of squares (used for estimating the CIV) is the sum of the between-rater and 

interaction sums of squares (Haber et al. 2005).  The observed mean squares are calculated in the same way for 

random raters and fixed raters, but the expected mean squares and estimated variance components are calculated 

differently (Eliasziw et al. 1994: Tables 2 and 3).   
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The procedure assumes that the subject and rater effects and the interrater and intrarater random errors have a 

normal distribution. 
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J.  COMPARISON OF SUBJECTS WITH VARYING 
NUMBERS OF MATCHED CONTROLS (“YES-NO” 

VARIABLE) 
 

This module is appropriate for the analysis of case-control studies, clinical trials and cohort 

studies in which each index subject (each case, experimental subject, or individual exposed 

to a risk or protective factor) has a variable number (1-20) of individually matched controls, 

and the dependent variable is dichotomous (“yes-no”), e.g. “yes” = exposure to a risk factor 

(in a case-control study), the success of a treatment, or the presence of a disease (in a cohort 

study).  It compares the findings in the index subjects and their matched controls. 

 

The program refers to index subjects as “cases”.  Each set of matched observations can be 

entered in a separate line, or sets with the same findings can be entered together, with their 

frequency.  The required entries for each pattern of findings are 0 (“no”) or 1 (“yes”) for the 

“case”, the number of  matched controls with “yes”, and the number of matched controls 

with “no”. 

 

If the data are stratified, enter each stratum in turn.  Click on “All strata” whenever 

combined results are required.   

 

The program provides tests (Mantel-Haenszel test, Walter's test for binary data), the odds 

ratio (maximum-likelihood and Mantel-Haenszel estimates, with their confidence intervals, 

and a low-bias estimate), and kappa. 

 

If stratified data are entered, an overall Mantel-Haenszel test is done, the results of the 

Walter’s tests in the separate strata are combined, the heterogeneity of the P-values in the 

strata is tested, and an overall kappa is computed. 

 

 

Tests 
 
The program performs a Mantel-Haenszel test (without a continuity correction) and Walter's 

test for binary data (with and without a continuity correction).  

 

If stratified data are entered, an overall Mantel-Haenszel test is done, and the Walter's tests 

in the separate strata (continuity-corrected) are combined by averaging their z values 

(Stouffer et al. 1949: 45; DeMets 1987) and computing an overall P that controls for the 

stratifying variables.  P-values are computed in three ways, weighting the strata by different 

methods: weighting them equally, by sample sizes (the number of pairs), and by the square 

roots of the sample sizes. In addition, a test is done for the heterogeneity of the P-values in 

the strata (Wolf 1986:  45). 

 
Odds ratio 
 

Maximum-likelihood and Mantel-Haenszel estimates of the odds ratio and their 90%, 95%, 

and 99% confidence intervals are computed, and Jewell's low-bias estimator of the odds ratio 

(Jewell 1984) is shown. 
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Kappa 
  

The program computes kappa, which expresses the agreement among all the observations in 

the matched sets, and may serve to express the effectiveness of the matching procedure, since 

it indicates the extent to which the findings in matched sets are more similar than findings in 

individuals from different sets. (Fleiss et al. 2003: 617-618). 

 

The probability of chance agreement is taken into account in the calculation of kappa.  A 

value of 1 indicates perfect agreement  (after allowing for this probability of chance 

agreement) between ratings; 0 indicates no agreement other than what can be attributed to 

chance, and a negative value indicates less than chance agreement.  Fleiss et al. (2003) 

suggest that a value of 0.75 or more indicates excellent agreement, and 0.40 or less indicates 

poor agreement. Cicchetti and Sparrow (1981) divide Fleiss’s 0.40–0.74 group into 0.60–

0.74: good; and 0.40–0.59: fair. Alternative guidelines are: over 0.80, very good agreement; 

0.61–0.80, good; 0.41–0.60, moderate; 0.21–0.40, fair; and 0.20 or less, poor agreement 

(Landis and Koch 1977, Altman 1991).   

 

 

METHODS 
 

Tests  
 
The Mantel-Haenszel test uses formula 13-18 of Rothman (1986).  If  stratified data are entered,  

chi-square = (∑Numi)
2
 / ∑(Deni

2
) 

where  Numi  =  numerator of Rothman’s formula in stratum i 

Deni = denominator of Rothman’s formula in stratum i 

 

The formula for Walter's test for binary data is formula 2 in Walter (1980); for a continuity-corrected test, 0.5 is 

subtracted from the absolute value of the numerator.   If stratified data are entered, the Walter's tests in the 

separate strata (continuity-corrected) are combined by averaging their  z values (Stouffer et al. 1949: 45; 

DeMets 1987).  Three different sets of weights are used for this purpose – weighting  the test results equally, by 

the sample sizes in the strata, and by the square roots of the sample sizes.  In addition, a heterogeneity test is 

performed, comparing the P-values in the strata, using the formula (Wolf 1986: 45): 

chi-square (k - 1 d.f.) = ∑(Zi - MeanZ)
2 

where  k = number of strata, 

Zi = z value in stratum i 
MeanZ = mean z value. 

 
Odds ratio 
 

The computation of the maximum likelihood estimate and exact intervals uses an efficient algorithm for 

calculating the coefficients of the conditional distribution (Martin and Austin 1991, 1996), using code from 

David O. Martin's public-domain EXACTBB program. 

 

The Manterl-Haenszel estimate of the odds ratio is computed by formula 13-9 of Rothman (1986), and its 

confidence intervals by the procedure described on page 274 of Rothman (1986).  

 
Kappa 
 
Kappa and its standard error are calculated by formulae 18.44 and 18.46 of Fleiss et al. (2003).   
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K.  COMPUTE KAPPA FOR A VARIABLE NUMBER OF 
RATINGS 

 

This module appraises the agreement between a variable number (3 or more) of matched 

observations with respect to a “yes”-“no” (dichotomous)  variable.  It might be used to 

measure the agreement between ratings of the same individuals, e.g. by different 

observers or tests, or between ratings of the same individuals made by the same observer on 

different occasions. 

 

The findings in the set of ratings are then entered, by entering the numbers of “yes” ratings 

and “no” ratings.  Each set of ratings can be entered separately, or sets with the same pattern 

of findings can be entered together, with their frequency. 

 

The program provides the overall kappa, and kappa values for individual categories. 

 

If stratified data are entered, an overall value of kappa is computed. 

 

 

Kappa 
 
The overall kappa is computed, with its standard error and significance.  Kappa values are 

also reported for individual categories, with their significance; but these test results should be 

treated with caution, since they are not based on a multiple-comparison procedure. 

 

For stratified data are entered, an overall value of kappa, weighted by sample size, is 

computed. 

 

The probability of chance agreement is taken into account in the calculation of kappa.  A 

value of 1 indicates perfect agreement  (after allowing for this probability of chance 

agreement) between ratings; 0 indicates no agreement other than what can be attributed to 

chance, and a negative value indicates less than chance agreement.  Fleiss et al. (2003) 

suggest that a value of 0.75 or more indicates excellent agreement, and 0.40 or less indicates 

poor agreement. Cicchetti and Sparrow (1981) divide Fleiss’s 0.40–0.74 group into 0.60–

0.74: good; and 0.40–0.59: fair. Alternative guidelines are: over 0.80, very good agreement; 

0.61–0.80, good; 0.41–0.60, moderate; 0.21–0.40, fair; and 0.20 or less, poor agreement 

(Landis and Koch 1977, Altman 1991).   

 

 

METHODS 
 

Kappa 
 

Kappa and its standard error are calculated by formulae 18.44 to 18.46 of Fleiss et al. (2003). 
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L1.  COMPARISON OF TWO GROUPS OF VARYING 
NUMBERS OF MATCHED NUMERICAL OBSERVATIONS 

 
This module is appropriate for the analysis of case-control or cohort studies, trials, 

comparisons of methods of measurement, or other studies that compare two groups of 

matched numerical variables, where some or all of the matched sets have 3 or more 

observations, and the numbers of observations in the two groups (in each set) may vary.  The 

program compares the two groups of observations. 

 

The groups are arbitrarily referred to as “cases” and “controls”. Optionally, a fixed number 

can be specified for the cases in each matched set.  A matched set may contain 2-9 

observations (1-8 cases and 1-8 controls).  Each set must be entered in a separate line: first 

the case or cases, , then a slash (/), then the control or controls, then another slash.  For 

example, the entry for a set containing 1 case and 3 controls might be: 

 16.23              /                9.8               11.06          15.11             / 

Up to 500 sets may be entered.    

    

The program provides three tests (Rosner's and Walter's tests and a paired t-test) for the 

difference between the mean values of cases and controls, approximate confidence 

intervals for this difference, between-sets and within-sets variances, and Hodges-

Lehmann estimate of difference between medians. 

 

 

Tests 
 

Rosner's test is a generalization of the paired t-test that takes account of within-sets and 

between-sets variability (Rosner 1982).  Iit appraises the significance of the differences 

between the mean values in the two groups.  Two P-values may be displayed.  If so, these 

may be regarded as the bounds of the true P-value.  The true P-value depends on the relative 

magnitude of the within-sets and between-sets variabilities (see below), as explained by an 

on-screen message. The test sometimes presents technical difficulties, and is omitted. 

 

Walter's test (Walter 1980) tests the significance of the mean case-control difference 

weighted by the numbers of cases and controls in the set.  Rosner (1982) points out that 

(unlike his test) Walter's test assumes zero between-sets variability, and may therefore 

provide a  misleadingly low P-value if there is much between-sets variability. 

 

The paired t-test tests the significance of the unweighted mean difference between the case 

and control means within each matched set.  Rosner (1982) points out that (unlike his test) 

the paired t test assumes zero within-sets variability, and may therefore provide a 

misleadingly low P-value if there is much within-sets variability. 

 
Difference between the mean values 
 

The program displays the mean case-control difference and its standard error, computed 

separately by the Rosner and Walter procedures and for unweighted data, with approximate 

90%, 95%, and 99% confidence intervals. 
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Hodges-Lehmann procedure 
 
This nonparametric procedure (Sprent 1993:89-90) determines the median of the differences 

between two matched sets, e.g matched cases and controls (with 90%, 95%, and 99% 

confidence intervals).  [This is not necessarily the same as the difference between the 

medians, or the median of the differences observed in each matched set.] 

  

A large-sample method of analysis is used if there are over 50 matched sets. 

 

The analysis takes account of tied differences (if the large-sample method is used), but not of 

variation within matched sets. 

 

Between-sets and within-sets variances 
 
The between-sets variance represents the variation between matched sets, and the within-sets 

variance represents the variation within either the case or the control group for a specific 

matched set.  The ratio of the two variances is an indication of the value of multiple 

matching.  If the between-sets variance is much larger than the within-sets variance, multiple 

matching brings little benefit (Rosner 1982; Lee and Wilkens 1994). 

 

METHODS 
 

Tests  
 

Rosner's test (Rosner 1982) is a generalization of the paired t-test that takes account of within-sets and between-

sets variability.  It adjusts and appraises the significance of the mean within-set difference.  The test sometimes 

presents technical difficulties, since it requires the computation of maximum-likelihood estimates by an iterative 
procedure that may fail to find an appropriate (positive) root.  If this difficulty is encountered (usually because 

of marked within-set variability) an appropriate message is displayed. 

 

In Rosner’s procedure the within-pairing variability is calculated by Rosner's formula 2.2 (Rosner 1982), and 

maximum likelihood estimates of the between-pairing variability and the adjusted mean case-control difference 

are then computed by an iterative process, using the van Wijnsgaarden-Dekker-Brent root-solver (Press et al. 

1989: 283-286).  The adjustment takes account of the numbers of cases and controls per set, using their 

reciprocals.  Significance is appraised by Rosner's formula 2.3, using alternative degrees of freedom when 

referring the test statistic (lambda) to the t-distribution, namely N - 2R and  R - 1 (where N = number of 

subjects and R = number of matched sets). This provides two P-values (both of which are shown if they differ 

appreciably), which may be regarded as the bounds of the true P-value.  The true value depends on the relative 

magnitude of the within-sets and between-sets variabilities. 

 

Walter’s test uses formula 2.4 of Rosner (1982).  This permits application of the test to situations where there 

are matched sets with two or more cases.   

 

The paired t-test is calculated by the usual formula (see, e.g. Selvin 1991: 65, formula 2.51), except that in each 

matched set the two values (of case and control) are replaced by the means (of cases, if there is more than one 
case, and of controls, if there is more than one control). 

 

Difference between the mean values 
 

In Rosner's procedure (see above), the adjusted mean case-control difference is computed by weighting the 

difference in each matched set by 

1 / {B + W.[(1 / N1) + (1 / N2)]} 
where B = between-sets variance 

W = within-sets variance   

N1 and N2 = numbers of cases and controls in the set. 
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In Walter’s procedure, the difference in each matched set is weighted by  1 / [(1 / N1) + (1 / N2)]  

 

 
Hodges-Lehmann procedure 
 

The differences between the values of cases and controls are calculated in the n matched sets. Where there are 

more than one case or control, their respective median values are used. 

 

As described by Han (2008), each difference is then compared with each other difference, and for each of these 

m = n(n -1 )/2 comparisons of two values, the mean of the pair of differences (Walsh value) is computed. 

The m means are then ranked in ascending order, and their median is determined.  This is the point estimate of 

the Hodges-Lehmann median difference between cases and controls. 

 

If  n <= 50, a value R corresponding to the value of n  is obtained from  Table A12 of Conove r(1999: p. 545), 
using the W0.005, W0.025, and W0.05 column for the 90%, 95%, and 99% confidence intervals respectively. The 

lower  confidence limit is the Walsh value whose rank is R in the series, and the upper confidence limit is the 

Walsh value whose rank is R from the upper end of the series, 

 

If n  > 50, confidence intervals are estimated by a large-sample approximation (1 and Wolfe 1999:132-133, 

using the formulae provided by Han (2008), but with a correction for tied ranks (Unistat Statistics Software).  

The lower confidence limit is the Walsh value whose rank is R in the series, where R = .za./.b rounded up to the 

nearest integer), and the upper confidence limit is the Walsh value whose rank is R from the upper end of the 

series, 

where z = -1.645, -1.96, or -2.5767 (for 90%, 95%, or 99% limits respectively) 

a = √ [n(n + 1)(2n + 1) / 24 - Tee / 48]   

b = n(n + 1) / 4 
n = number of matched sets 

Tee = the sum of  (ti
3
- ti) 

ti = the number of ties in each set of tied ranks 

 
The correction for ties (Tee / 48) in calculating a is omitted if it reduces a to zero or a negative value. 

 
Between-sets and within-sets variances 
 

These variances are computed by Rosner's procedure (Rosner 1982). 
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L2.  COMPARISON OF TWO METHODS OF 

MEASUREMENT, USING REPEATED NUMERICAL 

OBSERVATIONS  
 

This module is appropriate in methodological studies that compare two methods of 

measuring a numerical variable by applying each method to each subject more than once.    

 

The program provides the mean difference between measurements by the two methods, and 

gives two sets of results – one applicable to studies in which the true value does not change 

from one set of measurements to another, and one to studies in which the true value may 

vary.  In each instance, the program computes the standard deviation of the difference 

between the two methods, the 95% limits of agreement between these measurements, and 

ANOVA tables. The relationship between the difference and  the mean value is 

appraised. 

 

The number of pairs of measurements per subject can vary, but for each subject there must be 

the same number of measurements (at least two) by each method.  The measurements of each 

subject are entered in a separate line. If the true value can change between pairs of 

measurements, the measurements of a subject by the two methods must be entered in the 

same sequence, i.e., the first measurement by each method must be entered first, the second 

must be entered second, and so on. 

 

 

Mean difference and 95% limits of agreement 

 

The mean difference is the weighted mean of the differences between the measurements by 

the two methods. 

  

The 95% limits of agreement (Bland and Altman 1999) answer the question, “given a 

measurement by one method, how far might this be from a measurement by the other 

method?”  They demarcate the bounds of the range that, with a 95% probability, includes the 

difference between single measurements of the same subject by the two methods.   

 

Use of the 95% limits of agreement assumes that the differences are reasonably constant 

throughout the range of measurement.  To check this assumption, the program displays 

Spearman’s coefficient of correlation between the difference and the mean level.  The 

correlation coefficient may be expected to be zero if the mean difference does not change 

with increasing values.   Even when one of the methods of measurement is a new one and the 

other is an accepted standard, it is preferable to examine the relationship between the 

difference and the mean value rather than the relationship between the difference and the 

standard measurement, which (as shown by Bland and Altman 1995b) may be misleading. 

 

 

ANOVA tables 
 
One-way ANOVA tables show the between-subjects and residual  components of variance. 
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METHODS 
 
The standard deviations and 95% limits of agreement are computed by the methods explained by Bland and 

Altman (2007). 
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M.  COMPARISON OF REPLICATE NUMERICAL 

MEASUREMENTS (VARYING NUMBERS) 
 

This module appraises the agreement between matched numerical measurements, in a study 

where the numbers of matched measurements vary.  It might be used to measure the 

agreement between replicate ratings of the same individuals by different observers or by the 

same observer on different occasions, in studies of interobserver or intraobserver reliability.   

 

The measurements of each subject must be entered, in any order, on a separate line.   

 

The program computes a 95% repeatability coefficient, an intraclass correlation 

coefficient (with its 95% confidence interval) and Spearman-Brown coefficients of 

reliability, and estimates the number of replicates required to obtain a mean-rating ICC of 

0.75 or 0.8. 

 

 

95% repeatability coefficient 
 
This coefficient  expresses the expectation (with 95% confidence) for the maximum size of 

the absolute difference between a pair of observations, assuming that repeatability is similar 

at all magnitudes.  Approximate 95% confidence intervals are estimated for the coefficient. 

 
Intraclass correlation coefficient 
 
The intraclass correlation coefficient (ICC), which is appropriate for interval-scale data with 

an assumed normal distribution, is a measure of agreement that expresses the correlation 

between measurements within individuals or sets of matched individuals.  The program 

provides an estimate of the Shrout-Fleiss model 1,1 ICC (Shrout and Fleiss 1979), which is 

based on a “one-way random model”; the coefficient applies to the use of a single 

measurement.  As a rule of thumb, it has been suggested that values above 0.75 indicate 

excellent, and values above 0.4 good, reliability (Shoukri and Pause1999: 27).  Negative ICC 

values indicate that the within-subject variation is greater than the between-subject variation.   

 

The program reports the effective average number of replicates, on which (if the numbers of 

replicates vary) the computations are based. 

 
Spearman-Brown coefficients of reliability 
 
Spearman-Brown coefficients of reliability provide estimates of the effect of using the means 

of replicated observations (Fleiss 1986: 14-15).  They predict what the reliability would be if 

between 2 and 6 replications were averaged.  The program also uses the formula in reverse, 

to estimate the number of replicates required to obtain a mean-rating ICC of 0.75 or 0.8. 
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METHODS 
 

The computation of the coefficient of repeatability is explained by Bland and Altman (1999: 149).  It is based 

on the within-sets variance, computed by formula 13.16 of Guilford and Fruchter (1986: 235).  Approximate 

confidence intervals are obtained by substituting confidence limits for the within-sets variance, estimated by the 

method described by Zar (1998: formula 7.16), in the formula. 

 

The formula for the intraclass correlation coefficient (Shrout-Fleiss ICC model 1,1, computed from a one-way 
random effects model ANOVA) is: 

ICC = (MSB – MSW) / [MSB +  (k – 1)MSW] 
where  MSB = between-subjects mean square 

MSW = within-subjects mean square 

k = effective average number of replicates per subject. 

The effective average number of replicates is computed by formula 5 of Ebel (1951).  This provides a value 

(introduced by Snedecor 1946: 234) that is close to the harmonic mean.  The use of Ebel’s procedure was 
suggested by Solomon’s rating reliability calculator (Solomon 2004). 

 

Formulae for confidence intervals for the ICC models are provided by McGraw and Wong (1996a and 1996b) 

in their Table 7, where this ICC is referred to as ICC(1).  The number of ratings in the formulae, which as 

appropriate for studies with a fixed number of replicates, is replaced by the effective average number of 

replicates. 

 

The Spearman-Brown prediction formula (Fleiss 1986: 14-15: formula 1.3 ) for reliability (R) is 

R = Nr / [1 + (N – 1)r] 
where  N = number of replicates that are averaged 

 r = intraclass correlation coefficient  

Fleiss’s formula 1.31 is used to estimate the number of replicates required to obtain a reliability of 0.75 or 0.8: 

N = P(1 – r) / [r(1 – P)] 
where P = 0.75 or 0.8 
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Mis1.  EFFECT OF MISCLASSIFICATION: 
COMPARISON OF CASES AND MATCHED CONTROLS 
 

This module appraises the effect of misclassification (nondifferential or differential) on a 

comparison of cases and matched controls with respect to their exposure to a risk or 

protective factor.  It demonstrates the effect of the sensitivity and specificity of the measure 

of exposure, by computing the “true” findings that would give rise to the observed findings.. 

 

The program requires entry of the observed frequencies in a  paired-data 2x2 table, and 

estimates of the sensitivity and specificity (in cases and in controls) of the measure of 

exposure.   

 

The program  computes what the frequencies would be if there were no misclassification, i.e. 

the "true" frequencies that would have given rise to the observed finding, together with the 

"true" odds ratio based on the computed frequencies.  Confidence intervals are displayed for 

the observed and “true” odds ratios. 

 

The computed “true” results are not shown if they are unrealistic (if a “true” frequency is 

negative).  A message is displayed saying that the observed frequencies are not compatible 

with the sensitivity and specificity values, and that if the entries are correct, the findings may 

represent sampling error. 

 

 

 

METHODS 
 

The program constructs a 4 x 4 matrix representing four equations that express the relationship between the 
observed and true (correctly classified) frequencies, and solves them by calculating the inverse of the matrix and 

postmultiplying this by a vector composed of the observed frequencies. The procedure, a generalization of 

Barron's procedure for nondifferential misclassification (Barron 1977), is described by Kleinbaum, Kupper and 

Morgenstern (1982: 228-236) and Greenland and Kleinbaum (1983). If the matrix is not invertible an error 

message is displayed..   

 

Exact Fisher’s 95% confidence intervals are computed for the odds ratios; the “true” ratio is based on the “true” 

frequencies, after rounding them off to the nearest integer.  The intervals are computed by an algorithm 

described by Martin and Austin (1991) and using code from David O. Martin's public-domain EXACTBB 

program.  Uncertainty of the sensitivities and specificities is not taken into consideration. 
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Mis2.  EFFECT OF MISCLASSIFICATION: COMPARISON 
OF MATCHED EXPOSED AND UNEXPOSED SUBJECTS 

 

This module appraises the effect of misclassification (nondifferential or differential) on a 

comparison of matched subjects exposed and unexposed to a risk or protective factor, where 

the dependent variable is a disease or some other outcome.  It demonstrates the effect of the 

sensitivity and specificity of the measure of the outcome variable, bycomputing the “true” 

findings that would give rise to the observed findings.. 

 

The program requires entry of the observed frequencies in a  paired-data 2x2 table, and 

estimates of the sensitivity and specificity (in the exposed and unexposed groups) of the 

measure of the outcome variable..   

 

The program  computes what the frequencies would be if there were no misclassification, i.e. 

the "true" frequencies that would have given rise to the observed finding, together with the 

"true" odds ratio based on the computed frequencies.  Confidence intervals are displayed for 

the observed and “true” odds ratios. 

 

The computed “true” results are not shown if they are unrealistic (if a “true” frequency is 

negative).  A message is displayed saying that the observed frequencies are not compatible 

with the sensitivity and specificity values, and that if the entries are correct, the findings may 

represent sampling error. 

 

 

 

METHODS 
 

The program constructs a 4 x 4 matrix representing four equations that express the relationship between the 

observed and true (correctly classified) frequencies, and solves them by calculating the inverse of the matrix and 

postmultiplying this by a vector composed of the observed frequencies. The procedure, a generalization of 

Barron's procedure for nondifferential misclassification (Barron 1977), is described by Kleinbaum, Kupper and 

Morgenstern (1982: 228-236) and Greenland and Kleinbaum (1983). If the matrix is not invertible an error 

message is displayed..   

 
Exact Fisher’s 95% confidence intervals are computed for the odds ratios; the “true” ratio is based on the “true” 

frequencies, after rounding them off to the nearest integer.  The intervals are computed by an algorithm 

described by Martin and Austin (1991) and using code from David O. Martin's public-domain EXACTBB 

program.  Uncertainty of the sensitivities and specificities is not taken into consideration. 
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Mis3.  EFFECT OF MISCLASSIFICATION:  

COMPARISON OF ANY TWO MATCHED GROUPS 
 

This module appraises the effect of misclassification (nondifferential or differential) on a 

comparison of any two matched groups with respect to a dependent variable  It demonstrates 

the effect of the sensitivity and specificity of the measure of the dependent variable, by 

computing the “true” findings that would give rise to the observed findings.. 

 

The program requires entry of the observed frequencies in a  paired-data 2x2 table, and 

estimates of the sensitivity and specificity (in groups A and B) of the measure of the 

dependent variable.   

 

The program  computes what the frequencies would be if there were no misclassification, i.e. 

the "true" frequencies that would have given rise to the observed finding, together with the 

"true" odds ratio based on the computed frequencies.  Confidence intervals are displayed for 

the observed and “true” odds ratios. 

 

The computed “true” results are not shown if they are unrealistic (if a “true” frequency is 

negative).  A message is displayed saying that the observed frequencies are not compatible 

with the sensitivity and specificity values, and that if the entries are correct, the findings may 

represent sampling error. 

 

 

 

METHODS 
 

The program constructs a 4 x 4 matrix representing four equations that express the relationship between the 

observed and true (correctly classified) frequencies, and solves them by calculating the inverse of the matrix and 

postmultiplying this by a vector composed of the observed frequencies. The procedure, a generalization of 

Barron's procedure for nondifferential misclassification (Barron 1977), is described by Kleinbaum, Kupper and 

Morgenstern (1982: 228-236) and Greenland and Kleinbaum (1983). If the matrix is not invertible an error 

message is displayed..   

 

Exact Fisher’s 95% confidence intervals are computed for the odds ratios; the “true” ratio is based on the “true” 
frequencies, after rounding them off to the nearest integer.  The intervals are computed by an algorithm 

described by Martin and Austin (1991) and using code from David O. Martin's public-domain EXACTBB 

program.  Uncertainty of the sensitivities and specificities is not taken into consideration. 
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P1.  POWER OF TEST FOR DIFFERENCE BETWEEN 
PROPORTIONS (MATCHED PAIRS) 

 

This module computes the power of a McNemar test for a difference between proportions 

observed in matched subjects, or in the same individuals (as in before-after studies,  

comparisons of diagnostic procedures, and crossover trials).  

 

The program requires entry of the desired level of significance (for a one-sided or two-sided 

test), the sample size (the number of pairs of observations), the odds ratio to be detected, and 

either the expected number or the expected percentage of pairs with discrepant (“yes-no” and 

“no-yes”) results. 

 

Optionally, the percentage of expected losses of pairs in a projected study (nonresponses, 

dropouts, exclusions from the analysis, etc.) can be entered, and the sample size that is 

entered will be reduced accordingly before power is computed.  This does of course not 

allow for possible bias.  If the expected loss of observations is L%, the expected loss of pairs 

may be about  2L -  [L
2
 / 10000] %. 

 

Results should be used with caution if samples are very small. 

 

 
METHODS 

 

Power is computed by the asymptotic unconditional method.  The formula is an inversion of formula 3 of 

Julious et al. (1999), and is specified by Sahai & Kurshid (1996b: top of page 562).  If an odds ratio under 1 is 

entered, the computation uses its reciprocal; for this purpose, an odds ratio of 0 is first converted to 0.000001. 

 

If an expected loss rate is entered, the sample size is reduced before power is computed, and so is the expected 

number of discrepant pairs, if this number was entered. 
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P2.  POWER OF TEST FOR COMPARING DISTRIBUTION 
OF ORDERED CATEGORIES (MATCHED PAIRS) 

 

This module computes the power of a test (e.g., the Mann-Whitney test for paired data) for a 

difference between paired observations using an ordinal scale (such as “mild-moderate-

severe”).  The paired observations may relate to matched subjects, or to the same individuals 

(as in before-after studies, comparisons of diagnostic procedures, and crossover trials).  

 

The program requires entry of the desired level of significance (for a one-sided or two-sided 

test), the sample size (the number of pairs of observations), and the odds ratio to be detected.  

The procedure assumes a proportional odds model; that is, the odds ratio is assumed to be the 

same, whatever cutting-point may be used when combining adjacent ordered categories to 

convert the frequency-distribution table into a 2x2 table. 

 

The estimate of power is a conservative one (i.e., it underestimates power), especially if there 

are many categories. 

 

Optionally, the percentage of expected losses in a projected study (nonresponses, dropouts, 

exclusions from the analysis, etc.) can be entered, and the sample size that is entered will be 

reduced accordingly before power is computed.  This does of course not allow for possible 

bias.  If the expected loss of observations is L%, the expected loss of pairs may be about 

2L -  [L
2
 / 10000] %. 

 

 

 

METHODS 
 

The program uses an inversion of the simple “rule-of-thumb” formula recommended by Julious et al. (1999: 

formula 2) for estimating sample size for these tests. 

 
If an expected loss rate is entered, the sample size is reduced before power is computed  
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P3.  POWER OF TEST FOR DIFFERENCE BETWEEN 
MEANS (MATCHED PAIRS) 

 

This module computes the power of a paired t-test for a difference between means observed 

in paired observations, in matched subjects, or in the same individuals (as in before-after 

studies, comparisons of diagnostic procedures, and crossover trials).  

 

The program requires entry of the desired level of significance (for a one-sided or two-sided 

test), the sample size (the number of pairs of observations), and the difference to be detected 

(e.g. observation A minus observation B).  In addition, the standard deviation of the  

differences between paired values is required.  This can be entered, if its value is known or 

can be assumed.  If not, there are two alternatives that permit computation of the standard 

deviation.  These are: (a) entry of the within-subject mean square in an ANOVA (the residual 

within-subject mean square, after removal of the between-subjects component), if this is 

known (possibly from a published study; and (b) entry of the standard deviations of the two 

sets of observations, together with the correlation coefficient between the two sets  (if a zero 

coefficient is entered, this will provide a conservative estimate of sample size). 

 

Optionally, the percentage of expected losses in a projected study (nonresponses, dropouts, 

exclusions from the analysis, etc.) can be entered, and the sample size that is entered will be 

reduced accordingly before power is computed.  This does of course not allow for possible 

bias.  If the expected loss of observations is L%, the expected loss of pairs may be about 

2L -  [L
2
 / 10000] %. 

 

 

 

METHODS 
 

The program uses an inversion of formula 1 of Julious et al. (1999). 

 

If the standard deviation of the differences is not entered, it is computed either from the within-subject mean 

square, by multiplying its square root by √2 (Julious et al. 1999), or from the standard deviations of the two sets 
of observation (SDa and SDb) and the correlation coefficient (r), as 

  √(SDa
2
 + SDb

2
 – 2rSDaSDb) 

(Sokal and Rohlf 1981: 573).   

 

If an expected loss rate is entered, the sample size is reduced before power is computed  
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S1.  SAMPLE SIZES: “YES-NO” DATA: 
DIFFERENCE (MCNEMAR TEST) 

This module computes the sample size (the number of discrepant pairs of observations and 

the total number of pairs of observations) required for a McNemar test to detect a difference 

of a given magnitude between paired dichotomous (“yes”/“no”) observations in matched 

subjects or in the same individuals (as in before-after studies, comparisons of diagnostic 

procedures, and crossover trials).  It also computes the numbers of matched sets required for 

case-control studies with more than one matched control per case. 

 

Three entry options are offered: (a) entry of the odds ratio to be detected and the expected 

percentage of discrepant (“yes-no” and “no-yes”) pairs, or (b) entry of the odds ratio to be 

detected, the assumed value of the matching factor (see below) and the expected proportion 

of “yes” in the set of observations where that proportion is lower, or (c) the expected 

proportions of “yes” in both sets of matched observations.  The first two options are 

preferable to the third.  In addition, the required significance level and power must be 

entered. 

 

If the expected proportions of “yes” in the two sets of observations are entered, the 

computation provides results based on the assumption that that the two sets are mutually 

independent.  The required number of pairs that is reported is a maximal estimate, unless the 

matched observations are negatively correlated.  The stronger the positive correlation, the 

more the overestimation, as demonstrated in Table 2 of Lehr (2001).  If there is a negative 

correlation (that is, if a “yes” is likely to be associated with a “no” in the matched 

observation, as might occur in a paired before-after study where the first response influences 

the second, the computed sample sizes are underestimates.  An additional “worst-case” 

maximal requirement is calculated, for use in such instances. 

 

Optionally, the program will inflate sample sizes to compensate for the probability that not 

all the selected observations will be included in the analysis, e.g. because of failure to locate 

addresses, refusal to participate, or missing data.  This requires entry of the expected 

percentage of pairs that will be lost.  This inflation does of course NOT compensate for 

possible selection bias..  If the expected loss of observations is L%, the expected loss of pairs 

may be about  2L -  [L
2
 / 10000] %. 

 

 

Matching factor 
 

The matching factor is a measure of the degree to which the two sets of findings are similar 

because of matching.  In a well-matched case-control study similarity may be expected 

between the exposure status of cases and their matched controls; and in a well-matched 

cohort study or trial, matched subjects may be expected to be similar with respect to 

prognostic factors affecting the outcome.  The more similar the findings, the larger the 

sample sizes required.   

 

The matching factor may be derived from the expected 2 x 2 table showing the paired results; 

it is the product of the two numbers of concordant pairs, divided by the product of the two 

numbers of discordant pairs.  In a case-control study this is the exposure odds ratio, 
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measuring the unconditional association of the exposure status of a case with that of a 

matched control (Fleiss and Levin 1988, Lachin 1992).   

 

The matching factor is 1 if the findings are independent, and is seldom much more than 2.5 

(Fleiss and Levin 1988). 

 

 

METHODS 
 

If the odds ratio and expected percentage of discrepant pairs are entered, the required number of discrepant pairs 

is computed by formula 2 of Julious et al. (1999), and the required total number of pairs by formula 3 of Julious 

et al. (1999) (formula 5.4 of Sahai & Kurshid 1996b); this is an asymptotic unconditional method that has been 

shown to approximate satisfactorily to the results of computer simulations (Connett et al. 1987). 

 
The same method is used if the expected proportions of  “yes” in both sets of observations are entered, after 

estimating the numbers of pairs with discrepancies in each direction (S and T) from the proportions of “yes” (P1 

and P2), using formulae assuming an independent distribution (Royston 1993; Julious et al. 1999: 245): 

S = [P1(1 - P2)]  and 

T = [P2(1 - P1)]  
and then estimating the odds ratio and proportion of discrepant pairs from S and T: 

Odds ratio = S / T 

Proportion of discrepant pairs = S + T 
For the “worst-case” estimate, 

S = min(P1,1 - P2) 

T = P2 - P1 + S 

    
If the matching factor is entered, sample sizes are computed by the multinomial unconditional procedure 

(Connor 1987; Lachin 1992: formulas 17 and 21), which is slightly conservative.  If the calculated sample size 

is under 30, use is instead made of the local unconditional variance (Mitra 1958, Lachin 1992: formula 19), 

which is then more accurate. The estimated number of discordant pairs is also displayed. 

 
Sample sizes for case-control studies with more than one matched  control per case are calculated by formula 4 

of Julious et al. (1999). 

 

All sample sizes are rounded up to the next whole number.   

 

If an expected non-inclusion rate (R%) is entered, the program multiplies computed sample sizes by  

1 / [1 - (R / 100)] 
before rounding them up 
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S2.  SAMPLE SIZES: “YES-NO” DATA: 
AGREEMENT (KAPPA) 

 

This module computes the sample size required in a study to determine kappa for two 

categories and two sets of observations.   

 

The assumed value of kappa, the assumed proportion of “yes” findings  (which is assumed to 

be similar in both sets of observations), and the required significance level must be entered.  

In addition, one of the following must be entered: (a) the required power; (b) the desired 

width of the confidence interval for kappa (if the significance level is set at 5%, this refers to 

the 95% confidence interval); or (c) the desired lower confidence limit for kappa (if the 

significance level is set at 5%, this refers to the lower 95% confidence limit). Kupper and 

Hafner (1989) have pointed out that sample size formulae based on confidence interval width 

may underestimate the sample size required to provide statistically credible results. 

 

If power is entered, the program computes the sample sizes required to determine whether a 

kappa of the specified magnitude is significantly higher than 0.4 (taken to mean fair or good 

agreement) or 0.6 (taken to mean good agreement). 

 

Optionally, the program will inflate sample sizes to compensate for the probability that not 

all the selected observations will be included in the analysis, e.g. because of failure to locate 

addresses, refusal to participate, or missing data.  This requires entry of the expected 

percentage of pairs that will be lost.  This inflation does of course NOT compensate for 

possible selection bias..  If the expected loss of observations is L%, the expected loss of pairs 

may be about  2L -  [L
2
 / 10000] %. 

 

 

 

METHODS 
 

If power (1 – beta) is entered, the program computes the sample size required to determine whether the lower 

[(1-alpha)*100]%  confidence interval of the specified kappa exceeds 0.4 or 0.6.  Computation is based on a 

non-centrality parameter that is derived from (1 - beta) and (2 x alpha), and entered in the sample size formula 

provided by Donner and Eliasziw (1992). 

 
If the desired width of the confidence interval or the desired lower confidence level is entered, the program uses 

the procedure described by Donner (1999; formula 2.2). 

 

All sample sizes are rounded up to the next whole number.   

 

If an expected non-inclusion rate (R%) is entered, the program multiplies computed sample sizes by  

1 / [1 - (R / 100)] 
before rounding them up 
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S3.  SAMPLE SIZES: “YES-NO” DATA: 
EQUIVALENCE TEST 

 

This module computes the number of pairs required for a test of the equivalence of two sets 

of paired “yes-no” observations.   This may be useful in the planning of equivalence tests in 

matched case-control studies, matched-control parallel trials, crossover trials, and 

comparisons of diagnostic or screening tests. 

 

The program requires entry of the desired significance level and power, the magnitude of the 

difference (between the proportions of “yes”) that is regarded as negligible, and the expected 

percentage of discrepant (“yes-no”  and “no-yes”) pairs.   

 

Sample sizes are computed for an equivalence test based on the performance of two one-

sided tests, and for a one-sided test (e.g. for non-inferiority of a new treatment or screening 

test in comparison with an established one). 

 

Optionally, the program will inflate sample sizes to compensate for the probability that not 

all the selected observations will be included in the analysis, e.g. because of failure to locate 

addresses, refusal to participate, or missing data.  This requires entry of the expected 

percentage of pairs that will be lost.  This inflation does of course NOT compensate for 

possible selection bias..  If the expected loss of observations is L%, the expected loss of pairs 

may be about  2L -  [L
2
 / 10000] %. 

 

 

 

METHODS 
 

The program uses the procedures described by Liu et al. (2002) to compute the sample sizes required to test for 

equivalence, on the assumption that the observed proportions of "yes" in the two sets of observations are 

identical.  Sample sizes are computed for sample-based tests, applying a continuity correction (which increases 
the required sample size) unless otherwise stated.  The computation without a continuity correction uses 

formula 7 of Liu et al.;  the computation with a continuity correction requires an iterative process to solve an 

equation (Liu et al. 2002: 239); the van Wijnsgaarden-Bekker-Brent root-solver (Press et al. 1989: 283-286) is 

used for this purpose.  Sample sizes for a one-sided test (e.g. a non-inferiority test) are computed in a similar 

way,  with appropriate changes of significance level and power (Liu et al 2002: 239).  If any computed sample 

size is too small to ensure at least one discrepant pair in each direction (applying the expected proportion of 

discrepant pairs PropDP), it is raised to  1 / (PropDP / 2)  to meet this condition.   

 

All sample sizes are rounded up to the next whole number.   

 

If an expected non-inclusion rate (R%) is entered, the program multiplies computed sample sizes by  

1 / [1 - (R / 100)] 
before rounding them up 
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S4.  SAMPLE SIZES: ORDERED CATEGORIES: 
DIFFERENCE 

 

This module computes the number of pairs of observations required for a test to detect a 

given difference between paired observations using ordered categories (such as “mild-

moderate-severe”).  The observations may relate to matched subjects, or to the same 

individuals (as in before-after studies, comparisons of diagnostic procedures, and crossover 

trials).   

 

The procedure used is a simple “rule-of-thumb” one, and the estimate of sample sizes is a 

conservative one, especially if there are many categories.* 

 

If the majority of observations are expected to be in a single extreme category (e.g. in the 

“well” category of a health scale), Julious et al. (1999) recommend calling this category 

“yes” and determining the sample size needed for “yes-no” data (module S1).  If there are 

many categories, they suggest that the data be treated as normally distributed (module S5). 

 

The odds ratio to be detected must be entered, together with the required significance level 

and power.  The procedure assumes a proportional odds model; that is, the odds ratio is 

assumed to be the same, whatever cutting-point may be used when combining adjacent 

ordered categories to convert the frequency-distribution table into a paired-data 2x2 table. 

 

Optionally, the program will inflate sample sizes to compensate for the probability that not 

all the selected observations will be included in the analysis, e.g. because of failure to locate 

addresses, refusal to participate, or missing data.  This requires entry of the expected 

percentage of pairs that will be lost.  This inflation does of course NOT compensate for 

possible selection bias..  If the expected loss of observations is L%, the expected loss of pairs 

may be about  2L - [L
2
 / 10000] %. 

 
*   A more exact estimate can be obtained by a procedure provided by the PEPI program SAMPLES, which 

     requires entry (in addition to the odds ratio) of the expected relative distribution of positive-discrepant pairs  

     (pairs with discrepancies consistent in direction with  the odds ratio) that have different degrees of  

     discrepancy (Julious and  Campbell 1998). 

 

 

 

METHODS 
 

The program uses formula 2 of Julious et al. (1999, Appendix).  The procedure is a simple "rule-of-thumb" one 

that estimates the number of discordant pairs needed for a two-category situation and takes this as the total 

number of pairs required for a comparison of ordered categories.   

 
All sample sizes are rounded up to the next whole number.   

 

If an expected non-inclusion rate (R%) is entered, the program multiplies computed sample sizes by  

1 / [1 - (R / 100)] 
before rounding them up 

 

 
 

 



                                                                                      S5.   NUMERICAL DATA (PAIRED T TEST) 

 139 

 

 

S5.  SAMPLE SIZES: NUMERICAL DATA: 
DIFFERENCE (PAIRED T TEST) 

 

This module computes the number of pairs of observations required for a paired t test to 

detect a difference of a given magnitude between the means of  observations in matched 

subjects or in the same individuals (such as observations in matched pairs, before-after 

observations in the same individuals. or cross-over trials) (as in before-after studies, 

comparisons of diagnostic procedures, and crossover trials).   

 

The difference to be detected (e.g. mean A minus mean B), and the required significance 

level and power must be entered.  The standard deviation of the differences between paired 

values is also required.  This should be entered if its value is known or can be assumed. 

Alternatively, the program can compute the standard deviation.  This requires entry of either 

(a) the within-subject mean square in an ANOVA (the residual within-subject mean square, 

after removal of the between-subjects component), if this is known (possibly from a 

published study); or (b) the known or assumed standard deviations of the two sets of 

observations, together with the known or assumed correlation coefficient between the two 

sets (if a zero coefficient is entered, this will provide a conservative estimate of sample size). 

 

Optionally, the program will inflate sample sizes to compensate for the probability that not 

all the selected observations will be included in the analysis, e.g. because of failure to locate 

addresses, refusal to participate, or missing data.  This requires entry of the expected 

percentage of pairs that will be lost.  This inflation does of course NOT compensate for 

possible selection bias..  If the expected loss of observations is L%, the expected loss of pairs 

may be about  2L -  [L
2
 / 10000] %. 

 

Note that for a trial comparing two independent groups, each of them having paired values 

for each individual (e.g. before and after treatment), module H2 of COMPARE2 should be 

used, entering the difference to be detected between paired observations, and the standard 

deviations or variance of the differences between paired observations (Lachin 1981). 

 

 

METHODS 
 
If the within-subject mean square is entered, its square root is multiplied by √ 2 to obtain the standard deviation 
(S.D.) of the differences (Julious et al. 1999).   If the S.D.s of the two sets of observation (SDa and SDb) and the 

correlation coefficient (r) are entered, the S.D. of the differences is calculated (Sokal and Rohlf 1981: 573) as 

√ [SDa
2
 + SDb

2
 - 2r(SDa)(SDb)] 

 

The required number of pairs is estimated (for a one-sided test) by formula 2.1 of Guenther (1981), and (for a 

two-sided test) by the same formula using alpha / 2 instead of alpha (formula 1 of Julious et al. 1999). 

 
All sample sizes are rounded up to the next whole number.   If an expected non-inclusion rate (R%) is entered, 

the program multiplies computed sample sizes by  

1 / [1 - (R / 100)] 
before rounding them up. 
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S6.  SAMPLE SIZES: NUMERICAL DATA: AGREEMENT 
(INTRACLASS CORRELATION COEFFICIENT) 

 

This module computes the sample size required in a study to measure agreement by using an 

intraclass correlation coefficient (ICC).  It may be appropriate in a reliability study in which 

there are a fixed number (two or more) observations of each subject, or in studies using  

cluster samples of a fixed size. 

 

The required significance level, the number of observations per subject or set, and the 

expected ICC must first be entered.   Then  two options are offered: (a) entry of the required 

power and the value against which the expected ICC is to be tested; in a reliability study, the 

latter value is the lowest acceptable ICC; choices that have been suggested (Landis and Koch 

(1977) are 0.4 (moderate measurement reliability, 0.6 (substantial) or 0.8 (almost perfect); in 

other studies, it may be zero; and (b) entry of the desired width of the confidence interval for 

the ICC; Kupper and Hafner (1989) have pointed out that sample size formulae based on 

confidence interval width may underestimate the sample size required to provide statistically 

credible results.. 

 

If option (a) is selected, the program uses a simple approximation (Walter et al. 1998) whose 

results have excellent agreement with exact results.  It provides the sample size required to 

test the null hypothesis that the ICC is equal to the value against it is to be tested, against the 

alternative that it is higher.  The method is appropriate for studies in which the ICC can be  

estimated from an appropriate one-way ANOVA, e.g. those in which each subject is 

observed by different observers, by different methods, or at different times.  Between-

subjects and inter-subject variation are taken into account.  Walter et al. suggest that the 

method may also be a practical compromise for studies in which a two-way analysis (e.g. 

taking account of variation between specific observers) would be appropriate. 

 

If  option (b) is chosen, the program uses an approximation that Bonett (2002) has developed 

and shown to be very accurate.  This method is appropriate for studies in which the ICC can 

be estimated from a one-way or two-way ANOVA, e.g. those in which each subject is 

observed by different observers, by different methods, or at different times, in which 

between-subjects, inter-subject, and (if necessary) between- observers or between-methods 

variation must be taken into account  

 

When planning a reliability study, it may be helpful to compare the sample sizes required for 

different numbers of observations per subject. 

 

Optionally, the program will inflate sample sizes to compensate for the probability that not 

all the selected observations will be included in the analysis, e.g. because of failure to locate 

addresses, refusal to participate, or missing data.  This requires entry of the expected 

percentage of pairs or sets that will be lost.  This inflation does of course NOT compensate 

for possible selection bias..  If the expected loss of observations is L%, the expected loss of 

pairs may be about  2L -  [L
2
 / 10000] %, and the maximal loss of larger sets will be 3L%. 
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METHODS 

 
If the required power and the value against which the expected ICC is to be tested are entered, the computation 

uses formula 12 of Walter et al.(1998), with the recommended addition of 0.5 if the number of observations per 

subject/set is 2.   

 
If the desired width of the confidence interval for the ICC is entered, the computation uses formula 3 of Bonett 

(2002), with the correction suggested if the number of observations per set is 2 and the expected ICC is 0.7 or 

more. 

 
All sample sizes are rounded up to the next whole number.   If an expected non-inclusion rate (R%) is entered, 

the program multiplies computed sample sizes by  

1 / [1 - (R / 100)] 
before rounding them up 
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S7.  SAMPLE SIZES: NUMERICAL DATA: 

EQUIVALENCE TEST 
 

This module computes the number of pairs required for a test of the equivalence of the means 

of two sets of paired numerical observations .  This may be useful in the planning of 

equivalence tests in matched case-control studies, matched-control parallel trials, crossover 

trials, and comparisons of diagnostic or screening tests. 

 

The program requires entry of the desired significance level and power, the magnitude of the 

difference (between means) that is regarded as negligible, the mean of the reference set of 

observations, the expected absolute difference between the means of the two sets (which 

must be less than the maximum difference regarded as negligible). 

 

The standard deviation of the differences between paired values is also required.  This should 

be entered if its value is known or can be assumed. Alternatively, the program can compute 

the standard deviation.  This requires entry of either (a) the within-subject mean square in an 

ANOVA (the residual within-subject mean square, after removal of the between-subjects 

component), if this is known (possibly from a published study); or (b) the known or assumed 

standard deviations of the two sets of observations, together with the known or assumed 

correlation coefficient between the two sets (if a zero coefficient is entered, this will provide 

a conservative estimate of sample size).  The standard deviation of the differences (entered or 

computed) must be less than the mean value in the reference set. 

 

Either set of observations may be chosen as the reference set, but in a study comparing new 

and established treatments the established treatment is usually selected.  In such studies, a 

recommended definition of a negligible difference is from 0 to 20% of the mean of the 

reference set.  The mean value must be positive.  The standard deviation of the differences 

(entered or computed) must be less than the mean value in the reference set. 

 

Sample sizes are computed for an equivalence test based on the performance of two one-

sided tests, and for a single one-sided test (e.g. for non-inferiority of a new treatment in 

comparison with an established one). 

 

Optionally, the program will inflate sample sizes to compensate for the probability that not 

all the selected observations will be included in the analysis, e.g. because of failure to locate 

addresses, refusal to participate, or missing data.  This requires entry of the expected 

percentage of pairs  that will be lost.  This inflation does of course NOT compensate for 

possible selection bias..  If the expected loss of observations is L%, the expected loss of pairs 

may be about  2L -  [L
2
 / 10000] %, and the maximal loss of larger sets will be 3L%. 

 

 
METHODS 

 
The program uses the procedure described by Chow and Wang (2001) for a crossover design using raw data.  
Specifically, it uses the second set of equations designated as “B1” in Appendix B.  The required number of 

pairs is computed by an iterative process, using the van Wijnsgaarden-Dekker-Brent root-solver (Press et al. 

1989: 283-286).  The value 0.2 in Chow and Wang's equations is replaced by D/M, where D is the value entered 

as the maximum bound of a negligible difference, and M is the mean of the reference set.  The same equations 
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are used to estimate the number of pairs required for a one-sided test, with appropriate changes of significance 

level and power (Liu et al. 2002: 239).  

 
If the standard deviation of the differences is not entered, it is computed either from the within-subject mean 

square, by multiplying its square root by √2 (Julious et al. 1999), or from the standard deviations of the two sets 

of observation (SDa and SDb) and the correlation coefficient (r), as 

  √(SDa
2
 + SDb

2
 - 2rSDaSDb) 

(Sokal and Rohlf 1981: 573).   

 
All sample sizes are rounded up to the next whole number.   If an expected non-inclusion rate (R%) is entered, 

the program multiplies computed sample sizes by  

1 / [1 - (R / 100)] 

before rounding them up 
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